To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the partic...To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.展开更多
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr...Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50808087)
文摘To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.
基金Supported by the Key R&D Projects in Shaanxi Province(2022JBGS3-08)。
文摘Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.