The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The correspo...The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The corresponding deformation field was observed by a digital speckle correlation method. The experimental results show that the squared film deforms and debonds from stainless steel with the increase of pressure. The debonding of the squared film in initiates from the center of edge and extends to the comer, and then the deformation of film evolves from square to circle shape. The interfacial adhesive energy of polypropylene/stainless steel is (22.60±1.55) J/m2, which is in agreement with that measured by film with a circular window.展开更多
The surface modification of clay fines was carried out by using silanecoupling agent. By means of IR spectra etc, a study was made on the combined state ofcoupling agent and clay. A rubber--clay composite material wit...The surface modification of clay fines was carried out by using silanecoupling agent. By means of IR spectra etc, a study was made on the combined state ofcoupling agent and clay. A rubber--clay composite material with excellent performancehas been prepared.展开更多
A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special m...A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.展开更多
Comparative studies on the relationship between the welding parameters and joining efficiency in the friction welding of hybrid Al203-reinforced aluminum composites were conducted. Metal matrix composites (MMCs) wit...Comparative studies on the relationship between the welding parameters and joining efficiency in the friction welding of hybrid Al203-reinforced aluminum composites were conducted. Metal matrix composites (MMCs) with 37% (volume fraction) aluminum particle were joined by friction welding. The results show that the effects of the rotation speed on the reduction rate of particle size are greater than those of the upset pressure, and the area of the MMC weld zone decreases as the joining efficiency increases, while it is considered that the joining efficiency does not increase as the reduction rate of particle size decreases. During the macro-examination of the bonding interlace, a gray discolored region was observed on the bonding interface, and the center of the region was dark gray. After the micro-examination of the bonding interface, base metal made some second particulate formed by condensed alumina particulate but discoloration part distributed minute alumina particulate without second particulate. Consequently, it was also observed that rotational speed of 3 000 r/min and upset pressure of 63.6 MPa showed a very good.joint.展开更多
Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the chan...Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the changes in the wetting property. ESCA and electron spin resonance were utilized to examine the chemical composition and the attached free radicals of the fiber surface. The results, together with changes in the magnitude of the contact-angle and the number of free radicals with time after the plasma treatment do not show any ageing effect. Single filament test revealed that the tensile strength was not impaired but even improved somewhat after the plasma treatment. The experiment shows that the interlaminar shear strength of Kevlar fiber reinforced epoxy resin compo- site is increased for more than 60%% after the treatment.展开更多
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo...Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydr...The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydrophobic wax molecules, while the short indumentums are coated mostly with hydrophilic polysaccharides. Thus, the peach surface exhibits a quasi-superhydrophobic property and high adhesive force. A water droplet on the surface of a peach is a quasi-sphere, which is unable to roll off even when the peach is turned upside down. This is defined as the peach skin effect. We present that the quasi-superhydrophobic state with high adhesive force is attributed to the special coexisting Wenzel's and Cassie's state for water droplets, thus creating the strong interaction between the water droplet and surface.展开更多
Theoretical physics foretells that "strain engineering" of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices....Theoretical physics foretells that "strain engineering" of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices. However, to produce strained graphene in large quantities is not an easy task by any means. Here, we demonstrate that thermal annealing of graphene placed on various substrates could be a surprisingly simple method for preparing strained graphene with a large area. We found that enhanced graphene-substrate interfacial adhesion plays a critical role in developing strained graphene. Creative device architectures that consider the thermal mismatch between graphene and the target substrate could enable the resulting strain to be intentionally tailored. We believe that our proposed method could suggest a shortcut to realization of graphene straintronics.展开更多
基金Projects(11102176,11172258,10828205)supported by the National Natural Science Foundation of China
文摘The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The corresponding deformation field was observed by a digital speckle correlation method. The experimental results show that the squared film deforms and debonds from stainless steel with the increase of pressure. The debonding of the squared film in initiates from the center of edge and extends to the comer, and then the deformation of film evolves from square to circle shape. The interfacial adhesive energy of polypropylene/stainless steel is (22.60±1.55) J/m2, which is in agreement with that measured by film with a circular window.
文摘The surface modification of clay fines was carried out by using silanecoupling agent. By means of IR spectra etc, a study was made on the combined state ofcoupling agent and clay. A rubber--clay composite material with excellent performancehas been prepared.
基金Project(200831800044) supported by the Ministry of Communication of ChinaProject(50878054) supported by the National Natural Science Foundation of ChinaProject(06Y31) supported by the Department of Communication of Zhejiang Province,China
文摘A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.
基金Project (2010-0008-277) partly supported by the National Core Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘Comparative studies on the relationship between the welding parameters and joining efficiency in the friction welding of hybrid Al203-reinforced aluminum composites were conducted. Metal matrix composites (MMCs) with 37% (volume fraction) aluminum particle were joined by friction welding. The results show that the effects of the rotation speed on the reduction rate of particle size are greater than those of the upset pressure, and the area of the MMC weld zone decreases as the joining efficiency increases, while it is considered that the joining efficiency does not increase as the reduction rate of particle size decreases. During the macro-examination of the bonding interlace, a gray discolored region was observed on the bonding interface, and the center of the region was dark gray. After the micro-examination of the bonding interface, base metal made some second particulate formed by condensed alumina particulate but discoloration part distributed minute alumina particulate without second particulate. Consequently, it was also observed that rotational speed of 3 000 r/min and upset pressure of 63.6 MPa showed a very good.joint.
文摘Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the changes in the wetting property. ESCA and electron spin resonance were utilized to examine the chemical composition and the attached free radicals of the fiber surface. The results, together with changes in the magnitude of the contact-angle and the number of free radicals with time after the plasma treatment do not show any ageing effect. Single filament test revealed that the tensile strength was not impaired but even improved somewhat after the plasma treatment. The experiment shows that the interlaminar shear strength of Kevlar fiber reinforced epoxy resin compo- site is increased for more than 60%% after the treatment.
基金Project supported by the Earthquake Administration of Beijing Municipality and the National Development and Reform Commission of ChinaProject(IRT1125) supported by the program for Changjiang Scholars and Innovative Research Team in University, China
文摘Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
基金supported by the National Natural Science Foundation of China(21103006)the Beijing Natural Science Foundation(2132030)+2 种基金the National High Technology Research and Development Program of China(2012AA030305)the Fundamental Research Funds for the Central Universities(YWF-10-01-B16,YWF-11-03-Q-214,YWF-13-DX-XYJL-004)the 111 Project(B14009)
文摘The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydrophobic wax molecules, while the short indumentums are coated mostly with hydrophilic polysaccharides. Thus, the peach surface exhibits a quasi-superhydrophobic property and high adhesive force. A water droplet on the surface of a peach is a quasi-sphere, which is unable to roll off even when the peach is turned upside down. This is defined as the peach skin effect. We present that the quasi-superhydrophobic state with high adhesive force is attributed to the special coexisting Wenzel's and Cassie's state for water droplets, thus creating the strong interaction between the water droplet and surface.
文摘Theoretical physics foretells that "strain engineering" of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices. However, to produce strained graphene in large quantities is not an easy task by any means. Here, we demonstrate that thermal annealing of graphene placed on various substrates could be a surprisingly simple method for preparing strained graphene with a large area. We found that enhanced graphene-substrate interfacial adhesion plays a critical role in developing strained graphene. Creative device architectures that consider the thermal mismatch between graphene and the target substrate could enable the resulting strain to be intentionally tailored. We believe that our proposed method could suggest a shortcut to realization of graphene straintronics.