A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promisi...Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promising low-carbon alternative to traditional Portland cement-based concrete(OPC).GPC-bonded reinforcing bars offer a promising alternative for concrete structures,boasting excellent geopolymer binder/reinforcement bonding and superior corrosion and high-temperature resistance compared to Portland cement.However,due to differences in the production process of GPC,there are distinct engineering property variations,including bonding characteristics.This literature review provides an examination of the manufacturing procedures of GPC,encompassing source materials,mix design,curing regimes,and other factors directly influencing concrete properties.Additionally,it delves into the bond mechanism,bond tests,and corresponding results that represent the bond characteristics.The main conclusions are that GPC generally has superior mechanical properties and bond performance compared to ordinary Portland cement concrete(OPC).However,proper standardization is needed for its production and performance tests to limit the contradictory results in the lab and on site.展开更多
Clay addition to light-textured soils is used to ameliorate water repellency and to increase nutrient retention. However, clay addition may also increase the potential to bind organic matter and thus C sequestration. ...Clay addition to light-textured soils is used to ameliorate water repellency and to increase nutrient retention. However, clay addition may also increase the potential to bind organic matter and thus C sequestration. Divalent calcium ions (Ca2+) play an important role in binding of organic matter to clay because they provide the bridge between the clay particles and organic matter which are both negatively charged. In the first experiment, quartz sand was mixed with clay isolated from a Vertosol at rates of 0, 50 and 300 g kg-1, finely ground mature wheat residues (20 g kg-1) and powdered CaSO4 at 0, 5 and 10 g kg-1. Soil respiration was measured over 28 d. Compared to the sand alone, addition of isolated clay at 300 g kg-1 increased cumulative respiration with a stronger increase than that at 50 g kg-1. Addition of CaSO4 increased electrical conductivity, decreased sodium adsorption ratio and reduced cumulative respiration. The latter can be explained by enhanced sorption of organic matter to clay via Ca2+ bridges. In a second experiment, isolated clay or subsoil of the Vertosol without or with powdered CaSO4 at 10 g kg-1 were used for a batch sorption with water-extractable organic C (WEOC) from wheat straw followed by desorption with water. Addition of 10 g kg-1 CaSO4 increased sorption and decreased desorption of WEOC in both subsoil and isolated clay. In the third experiment, subsoil of the Vertosol was used for a batch sorption in which WEOC was added repeatedly. Repeated addition of WEOC increased the concentration of sorbed C but decreased the sorbed proportion of the added WEOC. This indicates that sorption of WEOC may be underestimated if it is added only once in batch sorption experaments.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.
基金supported by the ongoing projects provided by the National Key Research and Development Program(2021YFB2600704)the National Natural Science Foundation of China(52108223,U22A20244)+3 种基金the Outstanding Youth Fund of Shandong Province(ZR2021JQ17)the Natural Science Foundation of Shandong Province(ZR2020QE249)the 111 Project(D16006)the First-Class Discipline Project funded by the Education Department of Shandong Province are gratefully acknowledged.
文摘Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promising low-carbon alternative to traditional Portland cement-based concrete(OPC).GPC-bonded reinforcing bars offer a promising alternative for concrete structures,boasting excellent geopolymer binder/reinforcement bonding and superior corrosion and high-temperature resistance compared to Portland cement.However,due to differences in the production process of GPC,there are distinct engineering property variations,including bonding characteristics.This literature review provides an examination of the manufacturing procedures of GPC,encompassing source materials,mix design,curing regimes,and other factors directly influencing concrete properties.Additionally,it delves into the bond mechanism,bond tests,and corresponding results that represent the bond characteristics.The main conclusions are that GPC generally has superior mechanical properties and bond performance compared to ordinary Portland cement concrete(OPC).However,proper standardization is needed for its production and performance tests to limit the contradictory results in the lab and on site.
基金Supported by the Postgraduate Research Scholarship of La Trobe University,Australia
文摘Clay addition to light-textured soils is used to ameliorate water repellency and to increase nutrient retention. However, clay addition may also increase the potential to bind organic matter and thus C sequestration. Divalent calcium ions (Ca2+) play an important role in binding of organic matter to clay because they provide the bridge between the clay particles and organic matter which are both negatively charged. In the first experiment, quartz sand was mixed with clay isolated from a Vertosol at rates of 0, 50 and 300 g kg-1, finely ground mature wheat residues (20 g kg-1) and powdered CaSO4 at 0, 5 and 10 g kg-1. Soil respiration was measured over 28 d. Compared to the sand alone, addition of isolated clay at 300 g kg-1 increased cumulative respiration with a stronger increase than that at 50 g kg-1. Addition of CaSO4 increased electrical conductivity, decreased sodium adsorption ratio and reduced cumulative respiration. The latter can be explained by enhanced sorption of organic matter to clay via Ca2+ bridges. In a second experiment, isolated clay or subsoil of the Vertosol without or with powdered CaSO4 at 10 g kg-1 were used for a batch sorption with water-extractable organic C (WEOC) from wheat straw followed by desorption with water. Addition of 10 g kg-1 CaSO4 increased sorption and decreased desorption of WEOC in both subsoil and isolated clay. In the third experiment, subsoil of the Vertosol was used for a batch sorption in which WEOC was added repeatedly. Repeated addition of WEOC increased the concentration of sorbed C but decreased the sorbed proportion of the added WEOC. This indicates that sorption of WEOC may be underestimated if it is added only once in batch sorption experaments.