A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
The influences of time on clays are discussed first,and the concept of the instant normal compression line is proposed by analyzing the existing theories and experimental results.Based on the creep law,the relationshi...The influences of time on clays are discussed first,and the concept of the instant normal compression line is proposed by analyzing the existing theories and experimental results.Based on the creep law,the relationship between the aging time and the overconsolidation parameter is built.With the reloading equation of the UH model(unified hardening model for overconsolidated clays) used to calculate the instant compression deformation,a one-dimensional stress-strain-time relationship is proposed.Furthermore,the evolution of this relationship is analyzed,and the characteristic rate that is a function of the overconsolidation parameter is defined.Then a three-dimensional elastic-viscous-plastic constitutive model is suggested by incorporating equivalent time into the current yield function of the UH model.The new model can describe not only creep,rate effect and other viscous phenomena,but also shear dilatancy,strain softening and other behaviors of overconsolidated clays.Besides,compared with the modified Cam-clay model it requires only one additional parameter(the coefficient of secondary compression) to consider the creep law.Finally,because the proposed model can be changed into the UH model under instantaneous loading,the elastic-plastic and elastic-viscous-plastic frameworks are unified.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51179003,11072016,11272031)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20091102110030)
文摘The influences of time on clays are discussed first,and the concept of the instant normal compression line is proposed by analyzing the existing theories and experimental results.Based on the creep law,the relationship between the aging time and the overconsolidation parameter is built.With the reloading equation of the UH model(unified hardening model for overconsolidated clays) used to calculate the instant compression deformation,a one-dimensional stress-strain-time relationship is proposed.Furthermore,the evolution of this relationship is analyzed,and the characteristic rate that is a function of the overconsolidation parameter is defined.Then a three-dimensional elastic-viscous-plastic constitutive model is suggested by incorporating equivalent time into the current yield function of the UH model.The new model can describe not only creep,rate effect and other viscous phenomena,but also shear dilatancy,strain softening and other behaviors of overconsolidated clays.Besides,compared with the modified Cam-clay model it requires only one additional parameter(the coefficient of secondary compression) to consider the creep law.Finally,because the proposed model can be changed into the UH model under instantaneous loading,the elastic-plastic and elastic-viscous-plastic frameworks are unified.