开展了Mach数为1.23和1.41的冲击波作用下的Air/SF6斜界面不稳定性激波管实验,并利用王涛等人发展的可压缩多介质粘性流体和湍流大涡模拟程序MVFT(multi-viscous-fluid and turbulence),对该激波管实验进行了数值模拟,二者相比较一致性...开展了Mach数为1.23和1.41的冲击波作用下的Air/SF6斜界面不稳定性激波管实验,并利用王涛等人发展的可压缩多介质粘性流体和湍流大涡模拟程序MVFT(multi-viscous-fluid and turbulence),对该激波管实验进行了数值模拟,二者相比较一致性较好,包括界面图像、湍流混合区TMZ(turbulent mixing zone)宽度、气泡和尖钉位移,确认了该计算代码对界面不稳定性问题模拟的可靠性和有效性.数值模拟再现了冲击波作用下,Air/SF6斜界面的演化过程及流动中复杂波系结构的发展如冲击波的传播、折射和反射.结果还显示冲击波Mach数较大时,冲击波和界面相互作用时混合区获得的能量也较大,扰动界面发展的也更快.展开更多
This paper introduces a new idea of controlling cavitation around a hydrofoil through a passive cavitation controller called artificial cavitation bubble generator (ACG). Cyclic processes, namely, growth and implosi...This paper introduces a new idea of controlling cavitation around a hydrofoil through a passive cavitation controller called artificial cavitation bubble generator (ACG). Cyclic processes, namely, growth and implosion of bubbles around an immersed body, are the main reasons for the destruction and erosion of the said body. This paper aims to create a condition in which the cavitation bubbles reach a steady-state situation and prevent the occurrence of the cyclic processes. For this purpose, the ACG is placed on the surface of an immersed body, in particular, the suction surface of a 2D hydrofoil. A simulation was performed with an implicit finite volume scheme based on a SIMPLE algorithm associated with the multiphase and cavitation model. The modified k-ε RNG turbulence model equipped with a modification of the turbulent viscosity was applied to overcome the turbulence closure problem. Numerical simulation of water flow over the hydrofoil equipped with the ACG shows that a low-pressure recirculation area is produced behind the ACG and artificially generates stationary cavitation bubbles. The location, shape, and size of this ACG are the crucial parameters in creating a proper control. Results show that the cavitation bubble is controlled well with a well-designed ACG.展开更多
In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing lengt...In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing length theory and a modified mixing length were established. The results show that the modified mixing length includes the introduction of a damping function for the viscous sublayer and the second-order derivative to approximate eddy velocity. The calculated dimensionless time-smoothed velocity from the model based on Prandtl mixing length is much better than the result from the concept of eddy viscosity. The calculated eddy viscosity from the model based on modified mixing length is much better than the result from the model based on the classical Prandtl mixing length theory. And the friction factor calculated from the model based on the modified mixing length agrees well with the reported empirical relationships.展开更多
A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broad...A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broadband accuracy and under-resolved instability are examined combined with various orders and mesh resolutions. For shock-dominated flows, the superior accuracy of high order methods in terms of discontinuity resolution are well retained compared with lower ones. For under-resolved simulations, the artificial viscosity model is able to enhance stability of the eighth order discontinuous Galerkin method despite of detrimental influence for accuracy. For multi-scale flows, the artificial viscosity model demonstrates biased numerical dissipation towards higher wavenumbers. Capability in terms of boundary layer flows and hybrid meshes is also demonstrated.It is concluded that the fourth order artificial viscosity discontinuous Galerkin method is comparable to typical high order finite difference methods in the literature in terms of accuracy for identical number of degrees of freedom, while the eighth order is significantly better unless the under-resolved instability issue is raised. Furthermore, the artificial viscosity discontinuous Galerkin method is shown to provide appropriate numerical dissipation as compensation for turbulent kinetic energy decaying on moderately coarse meshes, indicating good potentiality for implicit large eddy simulation.展开更多
文摘开展了Mach数为1.23和1.41的冲击波作用下的Air/SF6斜界面不稳定性激波管实验,并利用王涛等人发展的可压缩多介质粘性流体和湍流大涡模拟程序MVFT(multi-viscous-fluid and turbulence),对该激波管实验进行了数值模拟,二者相比较一致性较好,包括界面图像、湍流混合区TMZ(turbulent mixing zone)宽度、气泡和尖钉位移,确认了该计算代码对界面不稳定性问题模拟的可靠性和有效性.数值模拟再现了冲击波作用下,Air/SF6斜界面的演化过程及流动中复杂波系结构的发展如冲击波的传播、折射和反射.结果还显示冲击波Mach数较大时,冲击波和界面相互作用时混合区获得的能量也较大,扰动界面发展的也更快.
文摘This paper introduces a new idea of controlling cavitation around a hydrofoil through a passive cavitation controller called artificial cavitation bubble generator (ACG). Cyclic processes, namely, growth and implosion of bubbles around an immersed body, are the main reasons for the destruction and erosion of the said body. This paper aims to create a condition in which the cavitation bubbles reach a steady-state situation and prevent the occurrence of the cyclic processes. For this purpose, the ACG is placed on the surface of an immersed body, in particular, the suction surface of a 2D hydrofoil. A simulation was performed with an implicit finite volume scheme based on a SIMPLE algorithm associated with the multiphase and cavitation model. The modified k-ε RNG turbulence model equipped with a modification of the turbulent viscosity was applied to overcome the turbulence closure problem. Numerical simulation of water flow over the hydrofoil equipped with the ACG shows that a low-pressure recirculation area is produced behind the ACG and artificially generates stationary cavitation bubbles. The location, shape, and size of this ACG are the crucial parameters in creating a proper control. Results show that the cavitation bubble is controlled well with a well-designed ACG.
基金Project(20736009) supported by the National Natural Science Foundation of ChinaProject(07JJ6017) supported by the Natural Science Foundation of Hunan Province, China
文摘In order to correctly predict tube cross section time-smoothed velocity distribution, friction factor and mass transfer behavior, two models for turbulent flow in circular tubes based on classical Prandtl mixing length theory and a modified mixing length were established. The results show that the modified mixing length includes the introduction of a damping function for the viscous sublayer and the second-order derivative to approximate eddy velocity. The calculated dimensionless time-smoothed velocity from the model based on Prandtl mixing length is much better than the result from the concept of eddy viscosity. The calculated eddy viscosity from the model based on modified mixing length is much better than the result from the model based on the classical Prandtl mixing length theory. And the friction factor calculated from the model based on the modified mixing length agrees well with the reported empirical relationships.
基金supported by the National Natural Science Foundation of China(Grant No.11402016)the Fundamental Research Funds for the Central Universities(Grant Nos.50100002014105020&50100002015105033)
文摘A discontinuous Galerkin method based on an artificial viscosity model is investigated in the context of the simulation of compressible turbulence. The effects of artificial viscosity on shock capturing ability, broadband accuracy and under-resolved instability are examined combined with various orders and mesh resolutions. For shock-dominated flows, the superior accuracy of high order methods in terms of discontinuity resolution are well retained compared with lower ones. For under-resolved simulations, the artificial viscosity model is able to enhance stability of the eighth order discontinuous Galerkin method despite of detrimental influence for accuracy. For multi-scale flows, the artificial viscosity model demonstrates biased numerical dissipation towards higher wavenumbers. Capability in terms of boundary layer flows and hybrid meshes is also demonstrated.It is concluded that the fourth order artificial viscosity discontinuous Galerkin method is comparable to typical high order finite difference methods in the literature in terms of accuracy for identical number of degrees of freedom, while the eighth order is significantly better unless the under-resolved instability issue is raised. Furthermore, the artificial viscosity discontinuous Galerkin method is shown to provide appropriate numerical dissipation as compensation for turbulent kinetic energy decaying on moderately coarse meshes, indicating good potentiality for implicit large eddy simulation.