Normally, industries in general, produce waste at its majority toxic, such as fly ash, for example, which damage the environment. The aim of this paper is to investigate the evolution of the temperature in a combustio...Normally, industries in general, produce waste at its majority toxic, such as fly ash, for example, which damage the environment. The aim of this paper is to investigate the evolution of the temperature in a combustion reactor, full of pellets manufactured with fly ash, clay and charcoal powder, after sintering, to obtainment synthetic aggregates for use in civil construction. The pellets were produced in a cement mix. For realization of the work, a co-current combustion reactor was made in order to analyze the temperatures profile and investigate if the values of these temperatures would be sufficient to initiate the process of sintering of the pellets. Temperatures reached in the reactor varied in the range of 800 ℃-1,290 ℃. These values are sufficient to initiate the process of sintering of the pellets. For the experiment realized, parameters such as inlet velocity of the fluid (air), diameters of the pellets and size of charcoal crushed in a disk mill were varied and the effect of variations of these parameters were analyzed for the experiment. The historical temperatures were recorded by a data acquisition instrument and subsequently plotted for analysis.展开更多
文摘Normally, industries in general, produce waste at its majority toxic, such as fly ash, for example, which damage the environment. The aim of this paper is to investigate the evolution of the temperature in a combustion reactor, full of pellets manufactured with fly ash, clay and charcoal powder, after sintering, to obtainment synthetic aggregates for use in civil construction. The pellets were produced in a cement mix. For realization of the work, a co-current combustion reactor was made in order to analyze the temperatures profile and investigate if the values of these temperatures would be sufficient to initiate the process of sintering of the pellets. Temperatures reached in the reactor varied in the range of 800 ℃-1,290 ℃. These values are sufficient to initiate the process of sintering of the pellets. For the experiment realized, parameters such as inlet velocity of the fluid (air), diameters of the pellets and size of charcoal crushed in a disk mill were varied and the effect of variations of these parameters were analyzed for the experiment. The historical temperatures were recorded by a data acquisition instrument and subsequently plotted for analysis.