The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systemati...The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systematic direct-shear tests with large direct-shear apparatus are carded out for geobelt reinforced clay under different normal stresses and water content. A reinforcement-sand-clay layer system improving the interface behavior greatly is designed. The stress-strain relationship is investigated on the basis of the experimental results. The results show that with the increase of the normal stress, the shear strength between the clay and the reinforcement increases nonlinearly, and with the increase of the water content, the friction coefficient between the clay and the reinforcement decreases dramatically and the cohesion between the clay and the polypropylene geobelt increases initially, then decreases. There is an optimal value for the water content between the clay and the polypropylene geobelt, which is 2% lower than the optimal water content of clay compaction. This reinforcement-sand-clay layer system improves the shear strength of the interface remarkably. Therefore, the clay-sand-reinforcement layer system is a rather good design for practical use in reinforcement engineering.展开更多
Leaching is widely applied in the exploitation of depleted ores. In order to discover the law of leachant movement in the leaching process and calculating volumes and time intervals of spraying leachant,experiments an...Leaching is widely applied in the exploitation of depleted ores. In order to discover the law of leachant movement in the leaching process and calculating volumes and time intervals of spraying leachant,experiments and numerical simulation with the TOUGH2/EOS3 module were carried out in order to find out the principle of water movement in unsaturated copper ore. The results show that water volume increases at the same location over time,that copper ore tends to become saturated and that liquid velocity decreases at the same time as the distance from top in-creases. On the other hand,a comparison and analysis of our experimental and simulated results indicate that the EOS3 module could accurately simulate the water movement in an unsaturated state.展开更多
文摘The property of the contact surface between geosynthetics and soil directly affects the whole structure's stability. The interface property is one of the most important indices for the reinforced structure. Systematic direct-shear tests with large direct-shear apparatus are carded out for geobelt reinforced clay under different normal stresses and water content. A reinforcement-sand-clay layer system improving the interface behavior greatly is designed. The stress-strain relationship is investigated on the basis of the experimental results. The results show that with the increase of the normal stress, the shear strength between the clay and the reinforcement increases nonlinearly, and with the increase of the water content, the friction coefficient between the clay and the reinforcement decreases dramatically and the cohesion between the clay and the polypropylene geobelt increases initially, then decreases. There is an optimal value for the water content between the clay and the polypropylene geobelt, which is 2% lower than the optimal water content of clay compaction. This reinforcement-sand-clay layer system improves the shear strength of the interface remarkably. Therefore, the clay-sand-reinforcement layer system is a rather good design for practical use in reinforcement engineering.
文摘Leaching is widely applied in the exploitation of depleted ores. In order to discover the law of leachant movement in the leaching process and calculating volumes and time intervals of spraying leachant,experiments and numerical simulation with the TOUGH2/EOS3 module were carried out in order to find out the principle of water movement in unsaturated copper ore. The results show that water volume increases at the same location over time,that copper ore tends to become saturated and that liquid velocity decreases at the same time as the distance from top in-creases. On the other hand,a comparison and analysis of our experimental and simulated results indicate that the EOS3 module could accurately simulate the water movement in an unsaturated state.