Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the ...Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.展开更多
The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain high...The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain higher levels of (4mm-0.0 mm) dust, than would be the case in standard un bound road base mixtures. The combined influence of the steel slag and granulated blast furnace slag wastes content is to enhance the stiffness of the road base materials and save materials and cost during road construction. Triaxial repeated load tests were performed on the unbound and lightly bound materials to measure their resilient modulus. The test results show important improvements in the bond strength between the contents of road base materials. This offers the prospect of using these materials in road base materials to reduce the use of primary aggregates and thus minimize the cost of roads and highways construction.展开更多
In the present study, compressive strength, pore structure, thermal behavior and microstrncture characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investi...In the present study, compressive strength, pore structure, thermal behavior and microstrncture characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Al- though it negatively impacts the properties of concrete at early ages, ground granulated blast furnace slag up to 45 wt% was found to improve the physical and mechanical properties of concrete at later ages. TiO2 nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. TiO2 nanoparticle as a partial replacement of cement up to 3 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early age of hydration and hence increase compressive strength of concrete. The increased TiO2 nanoparticles' content of more than 3 wt% may cause reduced compressive strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation and unsuitable dispersed nanoparticles in the concrete matrix. TiO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and less-harm pores.展开更多
The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed...The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.展开更多
文摘Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.
文摘The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain higher levels of (4mm-0.0 mm) dust, than would be the case in standard un bound road base mixtures. The combined influence of the steel slag and granulated blast furnace slag wastes content is to enhance the stiffness of the road base materials and save materials and cost during road construction. Triaxial repeated load tests were performed on the unbound and lightly bound materials to measure their resilient modulus. The test results show important improvements in the bond strength between the contents of road base materials. This offers the prospect of using these materials in road base materials to reduce the use of primary aggregates and thus minimize the cost of roads and highways construction.
文摘In the present study, compressive strength, pore structure, thermal behavior and microstrncture characteristics of concrete containing ground granulated blast furnace slag and TiO2 nanoparticles as binder were investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Al- though it negatively impacts the properties of concrete at early ages, ground granulated blast furnace slag up to 45 wt% was found to improve the physical and mechanical properties of concrete at later ages. TiO2 nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. TiO2 nanoparticle as a partial replacement of cement up to 3 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early age of hydration and hence increase compressive strength of concrete. The increased TiO2 nanoparticles' content of more than 3 wt% may cause reduced compressive strength because of the decreased crystalline Ca(OH)2 content required for C-S-H gel formation and unsuitable dispersed nanoparticles in the concrete matrix. TiO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and less-harm pores.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623106)the National Natural Science Foundation of China (Grant No. U1134008)
文摘The characteristics of C-S-H gel in hardened Portland cement pastes and complex binder pastes with ground granulated blast furnace slag were investigated with nanoindentation. The composition of C-S-H gel was analysed with SEM-EDS. The obtained results showed that the volume fraction of LD C-S-H gradually reduced and the volume fraction of HD C-S-H increased with the prolongation of hydration age. Most of the C-S-H gel produced at later age was HD C-S-H. The volume fraction of HD C-S-H increased as the fraction of slag in complex binder pastes increased, suggesting that HD C-S-H was mainly in the hydration products of slag. The chemichal compositions of the two types of C-S-H gel were simlar, meaning that formation and transformation of the two types of C-S-H gel were not affected by their Ca/Si ratio.