期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
桥面防水粘结层材料室内及现场性能测试分析研究 被引量:2
1
作者 胡文娟 《合成材料老化与应用》 2023年第1期95-97,共3页
选用SBR改性沥青、SBS改性沥青、SBS改性乳化沥青、专用防水涂料4种材料作为桥面防水粘结层材料,通过室内及现场试验分析对比不同防水粘结层材料的抗渗、抗拉拔、抗剪切、抗水损害、抗老化等性能,优选性能最佳的桥面防水粘结层材料。结... 选用SBR改性沥青、SBS改性沥青、SBS改性乳化沥青、专用防水涂料4种材料作为桥面防水粘结层材料,通过室内及现场试验分析对比不同防水粘结层材料的抗渗、抗拉拔、抗剪切、抗水损害、抗老化等性能,优选性能最佳的桥面防水粘结层材料。结果表明:SBS改性沥青和专用防水涂料的拉拔强度、剪切强度和高温性能较好,但抗水损害性能有待提高,而SBS改性乳化沥青的抗水损害性能和抗老化性能最好,但高温条件下的抗拉拔抗剪切性能不足;SBR改性沥青在高温条件下的拉拔强度和剪切强度最大,且具有较好的抗水损害和抗老化性能;与机械清扫施工相比,采用喷砂施工的桥面防水粘结层效果更好,且采用喷砂法处理桥面的SBR改性沥青防水粘结层现场剪切强度最佳,宜推荐作为桥面防水粘结层材料。 展开更多
关键词 混凝土桥面 防水粘结层材料 室内及现场试验 性能研究
下载PDF
复合式路面粘结层材料性能研究 被引量:1
2
作者 冯林 《公路交通科技(应用技术版)》 CAS CSCD 2014年第5期81-83,共3页
在AC+CRCP复合式路面中,沥青混合料面层和CRCP之间的良好粘结也是保证路面使用性能和较好耐久性的关键。本文首先采用有限元方法分析了粘结层所受的剪应力,然后通过剪切试验、拉拔试验、渗水试验、撒碎石试验等一系列室内试验方法,选择... 在AC+CRCP复合式路面中,沥青混合料面层和CRCP之间的良好粘结也是保证路面使用性能和较好耐久性的关键。本文首先采用有限元方法分析了粘结层所受的剪应力,然后通过剪切试验、拉拔试验、渗水试验、撒碎石试验等一系列室内试验方法,选择高性能的粘结层材料和合适的施工工艺,保证了沥青混合料面层和CRCP之间足够的粘结力。 展开更多
关键词 复合式路面 粘结层材料 性能
原文传递
热障涂层材料研究概述 被引量:5
3
作者 张洪博 段文皓 +4 位作者 张涛 白小龙 陆民刚 强文江 黄冰心 《材料保护》 CAS CSCD 2022年第7期177-186,217,共11页
热障涂层技术是先进航空发动机和地面燃气轮机实现高效率、低排放和长寿命的重要技术手段。系统总结了传统热障涂层材料、制备方法、失效机理等方面的研究进展,同时,着重讨论了新型热障涂层材料、热障涂层制备新工艺、热障涂层新结构形... 热障涂层技术是先进航空发动机和地面燃气轮机实现高效率、低排放和长寿命的重要技术手段。系统总结了传统热障涂层材料、制备方法、失效机理等方面的研究进展,同时,着重讨论了新型热障涂层材料、热障涂层制备新工艺、热障涂层新结构形式的研究现状及存在不足。最后,对热障涂层材料的研究趋势进行了展望. 展开更多
关键词 热障涂 陶瓷材料 粘结层材料 失效机理 材料探索
下载PDF
单组份环氧沥青桥面防水粘结层室内剪切和拉拔性能分析 被引量:1
4
作者 赵锡娟 《现代交通技术》 2016年第2期29-32,共4页
对单组份环氧沥青、双组份环氧沥青和SBS改性沥青3种防水粘结层材料进行室内剪切和拉拔性能对比,同时考虑涂层厚度、界面处理和温度的影响因素,得出3种防水粘结层材料的最佳涂层厚度均为1 mm,最优的界面处理方式为抛丸,并得出抗剪强度/... 对单组份环氧沥青、双组份环氧沥青和SBS改性沥青3种防水粘结层材料进行室内剪切和拉拔性能对比,同时考虑涂层厚度、界面处理和温度的影响因素,得出3种防水粘结层材料的最佳涂层厚度均为1 mm,最优的界面处理方式为抛丸,并得出抗剪强度/拉拔强度与试验温度均具有很好的二次相关性。 展开更多
关键词 防水粘结层材料 单组份环氧沥青 抗剪切强度 拉拔强度
下载PDF
Bonding interface zone of Mg-Gd-Y/Mg-Zn-Gd laminated composite fabricated by equal channel angular extrusion 被引量:3
5
作者 吴迪 陈荣石 韩恩厚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期613-618,共6页
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab... In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa. 展开更多
关键词 magnesium alloys laminated composite equal channel angular extrusion bonding interface bonding strength
下载PDF
The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model 被引量:9
6
作者 SUN ShiYong CHEN HaoRan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1481-1487,共7页
A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjun... A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models. 展开更多
关键词 VISCOELASTICITY interfacial crack rate-dependent cohesive model composite sandwich beam
原文传递
Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2 被引量:9
7
作者 Liqin Su Yifei Yu +1 位作者 Linyou Cao Yong Zhang 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2686-2697,共12页
This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temper... This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temperature (25-500℃) optical spectroscopy, which combines Raman and photoluminescence spectroscopies, is highly effective for investigating the interaction and material properties that are not accessible at the commonly used cryogenic temperature (e.g., a thermal activation process with an activation of a major fraction of the bandgap). This study investigates a set of monolayer WS2 films, either directly grown on sapphire and SiO2 substrates by CVD or transferred onto SiO2 substrate. The coupling with the substrate is shown to depend on the substrate type, the material- substrate bonding (even for the same substrate), and the excitation wavelength. The inherent difference in the states of strain between the as-grown and the transferred films has a significant impact on the material properties. 展开更多
关键词 tungsten disulfide high temperature RAMAN temperature coefficient PHOTOLUMINESCENCE activation energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部