The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydr...The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydrophobic wax molecules, while the short indumentums are coated mostly with hydrophilic polysaccharides. Thus, the peach surface exhibits a quasi-superhydrophobic property and high adhesive force. A water droplet on the surface of a peach is a quasi-sphere, which is unable to roll off even when the peach is turned upside down. This is defined as the peach skin effect. We present that the quasi-superhydrophobic state with high adhesive force is attributed to the special coexisting Wenzel's and Cassie's state for water droplets, thus creating the strong interaction between the water droplet and surface.展开更多
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
基金supported by the National Natural Science Foundation of China(21103006)the Beijing Natural Science Foundation(2132030)+2 种基金the National High Technology Research and Development Program of China(2012AA030305)the Fundamental Research Funds for the Central Universities(YWF-10-01-B16,YWF-11-03-Q-214,YWF-13-DX-XYJL-004)the 111 Project(B14009)
文摘The surface of a peach is known to exhibit spe- cial wettability and adhesion behaviors. We disclose that the peach surface is covered with long and short indumentums. The long indumentums are covered mainly with hydrophobic wax molecules, while the short indumentums are coated mostly with hydrophilic polysaccharides. Thus, the peach surface exhibits a quasi-superhydrophobic property and high adhesive force. A water droplet on the surface of a peach is a quasi-sphere, which is unable to roll off even when the peach is turned upside down. This is defined as the peach skin effect. We present that the quasi-superhydrophobic state with high adhesive force is attributed to the special coexisting Wenzel's and Cassie's state for water droplets, thus creating the strong interaction between the water droplet and surface.