The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show tha...The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show that there exists a serrated transition layer with a certain width at the interface of Cu Cr/1Cr18Ni9 Ti bi-metal materials, and the transition layer consists of Fe-based and Cu-based solid solutions. The elastic modulus and hardness reach the maximum values at the interface closing to the 1Cr18Ni9 Ti zone. The bonding temperature has a significant effect on the width and morphology of the transition layer. The interfacial bonding strength is at least 30% higher than that of the Cu Cr alloy, and the tensile fracture occurs at the side of the Cu Cr alloy rather than at the bonding interface.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51371139)Science and Technique Innovation Program of Shaanxi Province(Grant No.2012KTCQ01-14)+1 种基金Pivot Innovation Team of Shaanxi Electric Materials and the Infiltration Technique(Grant No.2012KCT-25)Shaanxi Provincial Project of Special Foundation of Key Disciplines
文摘The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show that there exists a serrated transition layer with a certain width at the interface of Cu Cr/1Cr18Ni9 Ti bi-metal materials, and the transition layer consists of Fe-based and Cu-based solid solutions. The elastic modulus and hardness reach the maximum values at the interface closing to the 1Cr18Ni9 Ti zone. The bonding temperature has a significant effect on the width and morphology of the transition layer. The interfacial bonding strength is at least 30% higher than that of the Cu Cr alloy, and the tensile fracture occurs at the side of the Cu Cr alloy rather than at the bonding interface.