An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. ...Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. CFRP specimens subjected to aggressive environments showed good durability with no significant degradation in tensile strength and modulus; however, GFRP specimens exhibited a little decrease in mechanical property after aggressive environments exposure. Based on the fast freeze-thaw cycling test and the wet-thermal exposure test, the influence of aggressive environments on the bond behavior between FRP and concrete, mechanical behavior of concrete beams and columns strengthened with FRP laminates was studied. The results showed that the bond strength had a significant decrease compared with those specimens kept at room temperature, and the specimens strengthened with FRP exhibited good durability.展开更多
Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert all...Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.展开更多
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
基金Sponsored by the National Natural Science Foundation of China(Grant No50608013)National Major Foundational Rearch(2004CCAO4100)
文摘Based on the fast freeze-thaw cycling test, the alkaline immersion test, the water immersion test and the wet-thermal exposure test, the influence of aggressive environments on mechanical behavior of FRP was studied. CFRP specimens subjected to aggressive environments showed good durability with no significant degradation in tensile strength and modulus; however, GFRP specimens exhibited a little decrease in mechanical property after aggressive environments exposure. Based on the fast freeze-thaw cycling test and the wet-thermal exposure test, the influence of aggressive environments on the bond behavior between FRP and concrete, mechanical behavior of concrete beams and columns strengthened with FRP laminates was studied. The results showed that the bond strength had a significant decrease compared with those specimens kept at room temperature, and the specimens strengthened with FRP exhibited good durability.
基金Project(51205428) supported by the National Natural Science Foundation of ChinaProject(CDJRC10130011) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(2010-0001-222) supported by NCRC (National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology,Korea
文摘Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.