Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundle...Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.展开更多
Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties an...Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.展开更多
This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly fo...This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly focused on copper antibacterial activity and copper antibacterial mechanisms.Conclusions stated that copper antibacterial activity is affected by copper homeostasis mechanisms in bacteria,adhesion,humidity,strain specificity,and manufacturing methods of antibacterial agents.For the preparation of particle antibacterial agents and surface antibacterial agents,this review discussed several manufacturing methods,such as sol−gel,cold spray,and biosynthesis belonging to chemical synthesis,physical synthesis,and biological synthesis,respectively.Sol−gel method contributes to the preparation of particle agents and surface agents.Cold spray technique is utilized in synthesis of surface copper agent.Biosynthesis is a novel technology which can be applied in nanoparticle agent preparation.展开更多
Recent breakthrough in eutectic gallium-indium alloy has revealed its great potential in modern electronic engineering. Here, we established a general method towards super-fast fabrication of flexible electronics via ...Recent breakthrough in eutectic gallium-indium alloy has revealed its great potential in modern electronic engineering. Here, we established a general method towards super-fast fabrication of flexible electronics via semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing on various substrates. Based on the semiliquid metal and its adhesion-difference on specifically designed target materials, we demonstrated that the rolling and transfer printing method could serve to rapidly manufacture a wide variety of complicated patterns with high resolution and large size. The process is much faster than most of the currently existing electronic fabrication strategies including liquid metal printing ever developed, and the cost either in time or consumption rate is rather low. As illustrated, a series of functional flexible and stretchable electronics such as multiple layer and large area circuits were fabricated to show their superior merit in combination with electrical conductivity and deformability. In addition, it was also demonstrated that the electronics fabricated in this way exhibited good repeatablity. A most noteworthy advantage is that all the fabrication processes could be highly automatic in the sense that user-friendly machines can thus be developed. This method paves a practical way for super-fast soft electronics manufacture and is expected to play an important role in the coming industry and consumer electronics.展开更多
文摘Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.
基金The project supported by the Natural Science Foundation of Fujian Province under Grant .No. W0650011 and Funds from Fujian Department of Education under Grant No. JB06041
文摘Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.
基金financial support from the fund of State Key Laboratory of Powder Metallurgy,Central South University,China
文摘This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly focused on copper antibacterial activity and copper antibacterial mechanisms.Conclusions stated that copper antibacterial activity is affected by copper homeostasis mechanisms in bacteria,adhesion,humidity,strain specificity,and manufacturing methods of antibacterial agents.For the preparation of particle antibacterial agents and surface antibacterial agents,this review discussed several manufacturing methods,such as sol−gel,cold spray,and biosynthesis belonging to chemical synthesis,physical synthesis,and biological synthesis,respectively.Sol−gel method contributes to the preparation of particle agents and surface agents.Cold spray technique is utilized in synthesis of surface copper agent.Biosynthesis is a novel technology which can be applied in nanoparticle agent preparation.
基金partially supported by the National Natural Science Foundation of China Key Project (91748206)Dean’s Research Funding and the Frontier Project of the Chinese Academy of Sciences
文摘Recent breakthrough in eutectic gallium-indium alloy has revealed its great potential in modern electronic engineering. Here, we established a general method towards super-fast fabrication of flexible electronics via semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing on various substrates. Based on the semiliquid metal and its adhesion-difference on specifically designed target materials, we demonstrated that the rolling and transfer printing method could serve to rapidly manufacture a wide variety of complicated patterns with high resolution and large size. The process is much faster than most of the currently existing electronic fabrication strategies including liquid metal printing ever developed, and the cost either in time or consumption rate is rather low. As illustrated, a series of functional flexible and stretchable electronics such as multiple layer and large area circuits were fabricated to show their superior merit in combination with electrical conductivity and deformability. In addition, it was also demonstrated that the electronics fabricated in this way exhibited good repeatablity. A most noteworthy advantage is that all the fabrication processes could be highly automatic in the sense that user-friendly machines can thus be developed. This method paves a practical way for super-fast soft electronics manufacture and is expected to play an important role in the coming industry and consumer electronics.