The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon (Salmo salar L.) in recirculating aquaculture systems (R.AS) were investigated. Fish ...The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon (Salmo salar L.) in recirculating aquaculture systems (R.AS) were investigated. Fish (initial body weight of 1677 g+ 157 g) were fed with four commercial feeds (Nosan salmon-NS, Aller gold-AG, Skretting salmon-SS and Hart ye-HY) in two feeding regimes (80% and 100% satiation) for 78 d. The results showed that salmon specific growth ratio (SGR) and weight gain ratio (WGR) were significantly affected by feed type and feeding regime (P〈0.05). Feed conversion ratio (FCR) varied between 0.93 and 3.40, which was significantly affected by feed type (P〈0.05), and slightly improved with increased satiation degree. The activities of digestive enzymes including protease, lipase and amylase were also significantly affected by feed type and feeding regime (P〈0.05), increasing with satiation degree. Flesh qualities for vitamin E, hydroxyproline (HYP), liquid loss and muscle pH among all groups showed significant differences (P〈0.05), ranging from 26.67 to 29.67, while no obvious difference was found in flesh color. Fecal viscosity for different treatments showed no significant difference, though improvement was found in 100% satiation group. From present experiment, it was concluded that both feed type and feeding regime can affect the important quality attributes of Atlantic salmon.展开更多
Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise inno...Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.展开更多
基金supported by the National Key Technologies R&D Program(2011BAD13B04)the earmarked fund for Modern Agro-industry Technology Research System(CARS-48)the National Natural Science Foundation of China(No.31240012)
文摘The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon (Salmo salar L.) in recirculating aquaculture systems (R.AS) were investigated. Fish (initial body weight of 1677 g+ 157 g) were fed with four commercial feeds (Nosan salmon-NS, Aller gold-AG, Skretting salmon-SS and Hart ye-HY) in two feeding regimes (80% and 100% satiation) for 78 d. The results showed that salmon specific growth ratio (SGR) and weight gain ratio (WGR) were significantly affected by feed type and feeding regime (P〈0.05). Feed conversion ratio (FCR) varied between 0.93 and 3.40, which was significantly affected by feed type (P〈0.05), and slightly improved with increased satiation degree. The activities of digestive enzymes including protease, lipase and amylase were also significantly affected by feed type and feeding regime (P〈0.05), increasing with satiation degree. Flesh qualities for vitamin E, hydroxyproline (HYP), liquid loss and muscle pH among all groups showed significant differences (P〈0.05), ranging from 26.67 to 29.67, while no obvious difference was found in flesh color. Fecal viscosity for different treatments showed no significant difference, though improvement was found in 100% satiation group. From present experiment, it was concluded that both feed type and feeding regime can affect the important quality attributes of Atlantic salmon.
基金funded by the Linkage,Infrastructure,Equipment and Facilities (LIEF) grant from the Australian Research Council (ARC) (No.LE120100104)supported by the ARC (No.LP120200418),Renewed Carbon Pty Ltd.of Australiathe Department of Agriculture,Australian Government’s Carbon Farming Futures Filling the Research Gap (No.RG134978)
文摘Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.