开展海水增养殖区卫生安全评价对于减少人体健康风险、提高增养殖区的有效管理尤为重要。本研究于2013年3月、5月、8月和10月对大连市金石滩、大长山岛、大李家3个重要海水增养殖区的贝类和海水进行了粪便污染指示菌总大肠菌群(TC)和粪...开展海水增养殖区卫生安全评价对于减少人体健康风险、提高增养殖区的有效管理尤为重要。本研究于2013年3月、5月、8月和10月对大连市金石滩、大长山岛、大李家3个重要海水增养殖区的贝类和海水进行了粪便污染指示菌总大肠菌群(TC)和粪大肠菌群(FC)的监测,同时监测了弧菌总数(TV)和主要环境要素(包括水温、pH、盐度、COD、DO、Chl a)。结果表明:这3个海区贝类组织中TC及海水中的TC、FC浓度均呈显著的时间和空间分布变化。贝类组织中TC含量随时间的分布趋势为:8月>5月>3月>10月,空间分布为:大长山岛>金石滩,大长山岛>大李家,而金石滩和大李家差异不显著(P<0.05);海水中TC和FC浓度分布特征相似,时间分布特征均为:金石滩8月份最高,大李家5月份最高,而大长山岛各月份均低于最低检测限(2 MPN/100 m L),空间分布特征均为:大李家增养殖区污染较为严重,而金石滩和大长山岛差异不显著(P<0.05)。3个增养殖区8月份和10月份的海水中TV浓度较高,为3.3×102~4.23×105CFU/100 m L。通过分析不同季节海水增养殖区中TC、FC、TV之间及其与水温、pH、盐度、COD、DO、Chl a的相关性,表明环境要素以及增养殖区水域特点对于粪便污染指示菌和弧菌的时空分布具有重要的影响。为更好地反映增养殖区的卫生安全状况,海水和养殖生物体内指示生物应同时监测,在监测传统粪便污染指示菌的同时,建议将弧菌作为重要的病原菌指标。展开更多
The application of multivariate data analysis, a method for coping with multi-colinearity among independent variables in analyzing coastal water quality data, is presented. This study investigates the statistical regr...The application of multivariate data analysis, a method for coping with multi-colinearity among independent variables in analyzing coastal water quality data, is presented. This study investigates the statistical regression modeling of FIB (fecal indicator bacteria) concentrations at the outlet of Talbert Marsh in Orange County, California. The multivariate data modeling utilized FIB and physical variables measurements (n = 5,580) collected during a series of longitudinal study of the Talbert Marsh. For the statistical prediction modeling in predicting the FIB concentrations at the outlet of the Talbert Marsh, multivariate analysis techniques such as PCR (principal components regression), PLS (partial least-squares) regression and SVM (support vector machine) regression were adopted. Statistical modeling results suggest that the statistical modeling predictions are all fell within the reasonable range of actual measurement data. In addition, it is indicated that the accuracy of SVM regression for predicting FIB concentrations at the Talbert Marsh outlet is better than that of other models.展开更多
文摘开展海水增养殖区卫生安全评价对于减少人体健康风险、提高增养殖区的有效管理尤为重要。本研究于2013年3月、5月、8月和10月对大连市金石滩、大长山岛、大李家3个重要海水增养殖区的贝类和海水进行了粪便污染指示菌总大肠菌群(TC)和粪大肠菌群(FC)的监测,同时监测了弧菌总数(TV)和主要环境要素(包括水温、pH、盐度、COD、DO、Chl a)。结果表明:这3个海区贝类组织中TC及海水中的TC、FC浓度均呈显著的时间和空间分布变化。贝类组织中TC含量随时间的分布趋势为:8月>5月>3月>10月,空间分布为:大长山岛>金石滩,大长山岛>大李家,而金石滩和大李家差异不显著(P<0.05);海水中TC和FC浓度分布特征相似,时间分布特征均为:金石滩8月份最高,大李家5月份最高,而大长山岛各月份均低于最低检测限(2 MPN/100 m L),空间分布特征均为:大李家增养殖区污染较为严重,而金石滩和大长山岛差异不显著(P<0.05)。3个增养殖区8月份和10月份的海水中TV浓度较高,为3.3×102~4.23×105CFU/100 m L。通过分析不同季节海水增养殖区中TC、FC、TV之间及其与水温、pH、盐度、COD、DO、Chl a的相关性,表明环境要素以及增养殖区水域特点对于粪便污染指示菌和弧菌的时空分布具有重要的影响。为更好地反映增养殖区的卫生安全状况,海水和养殖生物体内指示生物应同时监测,在监测传统粪便污染指示菌的同时,建议将弧菌作为重要的病原菌指标。
文摘The application of multivariate data analysis, a method for coping with multi-colinearity among independent variables in analyzing coastal water quality data, is presented. This study investigates the statistical regression modeling of FIB (fecal indicator bacteria) concentrations at the outlet of Talbert Marsh in Orange County, California. The multivariate data modeling utilized FIB and physical variables measurements (n = 5,580) collected during a series of longitudinal study of the Talbert Marsh. For the statistical prediction modeling in predicting the FIB concentrations at the outlet of the Talbert Marsh, multivariate analysis techniques such as PCR (principal components regression), PLS (partial least-squares) regression and SVM (support vector machine) regression were adopted. Statistical modeling results suggest that the statistical modeling predictions are all fell within the reasonable range of actual measurement data. In addition, it is indicated that the accuracy of SVM regression for predicting FIB concentrations at the Talbert Marsh outlet is better than that of other models.