The packet generator (pktgen) is a fundamental module of the majority of soft- ware testers used to benchmark network pro- tocols and functions. The high performance of the pktgen is an important feature of Future I...The packet generator (pktgen) is a fundamental module of the majority of soft- ware testers used to benchmark network pro- tocols and functions. The high performance of the pktgen is an important feature of Future Internet Testbeds, and DPDK is a network packet accelerated platform, so we can use DPDK to improve performance. Meanwhile, green computing is advocated for in the fu- ture of the internet. Most existing efforts have contributed to improving either performance or accuracy. We, however, shifted the focus to energy-efficiency. We find that high per- formance comes at the cost of high energy consumption. Therefore, we started from a widely used high performance schema, deeply studying the multi-core platform, especially in terms of parallelism, core allocation, and fre- quency controlling. On this basis, we proposed an AFfinity-oriented Fine-grained CONtrolling (AFFCON) mechanism in order to improve energy efficiency with desirable performance. As clearly demonstrated through a series of evaluative experiments, our proposal can reduce CPU power consumption by up to 11% while maintaining throughput at the line rate.展开更多
A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–...A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.展开更多
基金supported by the National Science Foundation of China (No. 61472130, Research on Graphic Processing Units-based High-performance Packet Processing)the China Postdoctoral Science Foundation funded project (No. 61702174)
文摘The packet generator (pktgen) is a fundamental module of the majority of soft- ware testers used to benchmark network pro- tocols and functions. The high performance of the pktgen is an important feature of Future Internet Testbeds, and DPDK is a network packet accelerated platform, so we can use DPDK to improve performance. Meanwhile, green computing is advocated for in the fu- ture of the internet. Most existing efforts have contributed to improving either performance or accuracy. We, however, shifted the focus to energy-efficiency. We find that high per- formance comes at the cost of high energy consumption. Therefore, we started from a widely used high performance schema, deeply studying the multi-core platform, especially in terms of parallelism, core allocation, and fre- quency controlling. On this basis, we proposed an AFfinity-oriented Fine-grained CONtrolling (AFFCON) mechanism in order to improve energy efficiency with desirable performance. As clearly demonstrated through a series of evaluative experiments, our proposal can reduce CPU power consumption by up to 11% while maintaining throughput at the line rate.
基金supported by the National Natural Science Foundation of China (91633301, 51773095)MoST of China (2014CB643502)+1 种基金Tianjin city (17JCJQJC44500, 17CZDJC31100)111 Project (B12015)
文摘A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.