期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7的网箱网衣破损识别方法 被引量:2
1
作者 俞国燕 苏锦萍 +3 位作者 陈泽佳 陈帅兴 陈其菠 吴振陆 《渔业现代化》 CSCD 2023年第4期126-136,共11页
网箱网衣极易破损,一旦破损未及时修补,会给养殖户造成巨大的经济损失。为实现智能化网箱网衣破损检测,本研究提出一种基于改进YOLOv7的网箱网衣破损识别方法。该方法通过在Backbone网络使用gnConv结构、Neck网络引入SimAM模块来提升模... 网箱网衣极易破损,一旦破损未及时修补,会给养殖户造成巨大的经济损失。为实现智能化网箱网衣破损检测,本研究提出一种基于改进YOLOv7的网箱网衣破损识别方法。该方法通过在Backbone网络使用gnConv结构、Neck网络引入SimAM模块来提升模型表达能力更好聚焦网衣破损处的特征,提高模型的检测精度。Backbone网络使用深度可分离卷积,并减少激活函数和改变卷积步长,同时在Neck网络利用Bottleneck模块使用1×1卷积核的特点和使用性能更佳的Mish激活函数重构模型,以减少参数量和运算成本,实现模型检测速度的提升及尺寸的压缩。通过消融试验和对比试验结果显示,YOLOv7-C3NeHX比原YOLOv7算法的平均精度提高了3.1个百分点,精确率、召回率与F 1值分别提升了0.5、4.2与3个百分点,检测速度达到了232.56FPS,GFLOPs和模型尺寸分别占原YOLOv7的38.2%和94.3%。研究表明,改进模型能有效提高识别效率和部署的灵活性,为智能网衣修补机器人的研发提供技术支持。 展开更多
关键词 网衣破损 精准实时识别 目标检测 视觉系统 智能网衣修补机器人
下载PDF
基于改进型YOLOv4的病死金鲳鱼识别方法 被引量:3
2
作者 俞国燕 罗樱桐 +2 位作者 王林 梁贻察 侯明鑫 《渔业现代化》 CSCD 2021年第6期80-89,共10页
实时检测并获取养殖鱼群的健康状态是规模化渔业养殖实现精准、绿色养殖和可持续发展的关键技术之一,其中实时识别病死鱼并及时收集处理更是减轻养殖水域污染、防止病害扩散、降低养殖风险的有效举措。然而在复杂的浅滩环境中,如光照变... 实时检测并获取养殖鱼群的健康状态是规模化渔业养殖实现精准、绿色养殖和可持续发展的关键技术之一,其中实时识别病死鱼并及时收集处理更是减轻养殖水域污染、防止病害扩散、降低养殖风险的有效举措。然而在复杂的浅滩环境中,如光照变化、目标重叠、位置不稳定以及水雾造成模糊,使病死金鲳鱼实时识别并收集非常具有挑战性。本研究提出一种基于YOLOv4-v1的改进算法,在PANet模块中集成自定义Super网络,对输入的特征图进行编码解码过程,在细粒度特征提取中减少外界环境带来的干扰。此外,利用tanh-v1函数激活,增强了特征传播并确保网络中最大信息流。同时采用Resblockbody1模块,提高了目标框的定位精度。在浅滩养殖场景中,分析病死金鲳鱼图像在不同模型上对比试验结果中,YOLOv4-v1网络识别病死金鲳鱼的m-(平均精度)值高达98.31%,实时检测性能达到了27 FPS。通过与YOLOv4网络对比试验可得,YOLOv4-v1算法在线下试验中,检测速度基本与原网络持平,且m-值相较于YOLOv4提升了3.36%,召回率提升了2.54%,F 1分数(精确率与召回率的平衡点)提升了0.56%。研究表明,YOLOv4-v1方法在死鱼识别方面具有良好的应用场景。 展开更多
关键词 病死金鲳鱼 精准实时识别 YOLOv4-v1算法 浅滩养殖场景
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部