This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper ...This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,展开更多
Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In thi...Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In this paper, an overview of current validation methods for medical image registration is presented with detailed discussion of their benefits and drawbacks. Special focus is on non-rigid registration validation. Promising solution is also discussed.展开更多
To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-c...To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-calibration methods are not fit for fast calibration of accelerometers because the platform misalignments have to be estimated precisely and the nonlinear coupling terms will affect accuracy. The multi-position methods with a "shape of motion" algorithm also have some existing disadvantages: High precision calibration results cannot be obtained when the accelerometer's output data are used directly and it is difficult to optimize the calibration scheme. Focusing on this field, this paper proposes new fast self-calibration methods for the accelerometers of PINS. A data compression filter is employed to improve the accuracy of parameter estimation because it is impossible to obtain non-biased estimation for accelerometer parameters when using the "shape of motion" algorithm. Besides, continuous calibration schemes are designed and optimized by the genetic algorithm(GA) to improve the observability of parameters. Simulations prove that the proposed methods can estimate the accelerometer parameter more precisely than traditional continuous methods and multi-position methods, and they are more practical to deal with urgent situations than multi-position methods.展开更多
Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is...Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is obtained in this paper.In other cases the temperature would vary monotonously along geometric coordinates as time goes by.There have been very few open reports of explicit unsteady multidimensional exact analytical solutions published in literature.Besides its irreplaceable theoretical value,the analytical solution can also serve as standard solution to check numerical calculation,and therefore promote the development of numerical method of computational heat transfer.In addition,some new special methods have been given originally and deserved further attention.展开更多
文摘This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,
基金Supported by National Basic Research Program of China Grant(2011CB707701)National Natural Science Foundation of China(81127003)
文摘Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In this paper, an overview of current validation methods for medical image registration is presented with detailed discussion of their benefits and drawbacks. Special focus is on non-rigid registration validation. Promising solution is also discussed.
文摘To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-calibration methods are not fit for fast calibration of accelerometers because the platform misalignments have to be estimated precisely and the nonlinear coupling terms will affect accuracy. The multi-position methods with a "shape of motion" algorithm also have some existing disadvantages: High precision calibration results cannot be obtained when the accelerometer's output data are used directly and it is difficult to optimize the calibration scheme. Focusing on this field, this paper proposes new fast self-calibration methods for the accelerometers of PINS. A data compression filter is employed to improve the accuracy of parameter estimation because it is impossible to obtain non-biased estimation for accelerometer parameters when using the "shape of motion" algorithm. Besides, continuous calibration schemes are designed and optimized by the genetic algorithm(GA) to improve the observability of parameters. Simulations prove that the proposed methods can estimate the accelerometer parameter more precisely than traditional continuous methods and multi-position methods, and they are more practical to deal with urgent situations than multi-position methods.
基金supported by the National Natural Science Foundation of China(Grant No.50876106)
文摘Reasonable unsteady three-dimensional explicit analytical solutions are derived with different methods for the widely used bio-heat transfer equation–Pennes equation.The condition to decide temperature oscillation is obtained in this paper.In other cases the temperature would vary monotonously along geometric coordinates as time goes by.There have been very few open reports of explicit unsteady multidimensional exact analytical solutions published in literature.Besides its irreplaceable theoretical value,the analytical solution can also serve as standard solution to check numerical calculation,and therefore promote the development of numerical method of computational heat transfer.In addition,some new special methods have been given originally and deserved further attention.