Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based ...Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.展开更多
The quantitative detector of driver fatigue presents appropriate warnings and helps to prevent traffic accidents.The aim of this study was to quantifiably evaluate driver mental fatigue using the power spectral analys...The quantitative detector of driver fatigue presents appropriate warnings and helps to prevent traffic accidents.The aim of this study was to quantifiably evaluate driver mental fatigue using the power spectral analysis of the blood pressure variability (BPV) and subjective evaluation. In this experiment twenty healthy male subjects were required to perform a driving simulator task for 3-hours. The physiological variables for evaluating driver mental fatigue were spectral values of blood pressure variability (BPV)including very low frequency (VLF), low frequency (LF),high frequency (HF). As a result, LF, HF and LF/HF showed high correlations with driver mental fatigue but not found in VLF. The findings represent a possible utility of BPV spectral analysis in quantitatively evaluating driver mental fatigue.展开更多
基金Project(51775059)supported by the National Natural Science Foundation of ChinaProject(2017YFB1300700)supported by the National Key Research&Development Program of China。
文摘Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.
文摘The quantitative detector of driver fatigue presents appropriate warnings and helps to prevent traffic accidents.The aim of this study was to quantifiably evaluate driver mental fatigue using the power spectral analysis of the blood pressure variability (BPV) and subjective evaluation. In this experiment twenty healthy male subjects were required to perform a driving simulator task for 3-hours. The physiological variables for evaluating driver mental fatigue were spectral values of blood pressure variability (BPV)including very low frequency (VLF), low frequency (LF),high frequency (HF). As a result, LF, HF and LF/HF showed high correlations with driver mental fatigue but not found in VLF. The findings represent a possible utility of BPV spectral analysis in quantitatively evaluating driver mental fatigue.