期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
精子分类法决定家畜性别
1
《河南畜牧兽医》 2002年第5期49-49,共1页
关键词 精子分类 家畜 性别 英国
下载PDF
用精子分类法决定家畜性别
2
作者 李小荣 《四川奶业》 2002年第1期30-30,共1页
关键词 精子分类 家畜 性别鉴定
下载PDF
基于卷积神经网络的精子形态学分类研究
3
作者 于典 陆凤雅 +2 位作者 钟振声 王奕 周金华 《医疗卫生装备》 CAS 2024年第10期7-13,共7页
目的:为提高精子形态学分类的准确性,提出一种基于卷积神经网络的精子分类模型。方法:使用EfficientNetB0作为基础模型,通过数据预处理增强、迁移学习以及余弦衰减进行微调,构建FT-EfficientNet模型。在精子公开数据集SCIAN-Morpho和HuS... 目的:为提高精子形态学分类的准确性,提出一种基于卷积神经网络的精子分类模型。方法:使用EfficientNetB0作为基础模型,通过数据预处理增强、迁移学习以及余弦衰减进行微调,构建FT-EfficientNet模型。在精子公开数据集SCIAN-Morpho和HuSHeM上进行分类实验,利用5折交叉验证对数据集进行分割与验证,并与级联式的支持向量机(cascade ensemble of support vector machines,CE-SVM)模型、基于块的自适应字典学习(adaptive patchbased dictionary learning,APDL)模型、微调可视几何组(fine tuning of visual geometry group,FT-VGG)模型、人类精子头部形态分类(morphological classification of human sperm heads,MC-HSH)模型、迁移学习(transfer learning,TL)模型的分类结果进行对比。在SCIAN-Morpho数据集中进行消融实验,验证不同微调方法对模型的影响。结果:FT-EfficientNet模型在SCIAN-Morpho验证集上的准确率、精确度及F_(1)分数分别为64.1%、63.8%和64.8%,优于CE-SVM、APDL、FT-VGG、MC-HSH模型,召回率为65.2%,略低于MC-HSH模型(68.0%)。FT-EfficientNet模型在HuSHeM验证集上的准确率、精确度、F_(1)分数、召回率分别为95.4%、95.8%、95.4%和96.0%,略低于TL模型,但优于CE-SVM、APDL、FT-VGG、MC-HSH模型。消融实验结果表明,FT-EfficientNet模型应用的微调方法所得结果最优。结论:基于卷积神经网络的精子分类模型能够完成精子形态学分类,提升分类的准确度及性能。 展开更多
关键词 精子形态学 CNN 精子分类 EfficientNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部