Spermatogenesis is a complicated and poorly understood process that relies on the precise regulation of the self-renewal and differentiation of spermatogonia. In many organisms, micro RNAs(mi RNAs) are involved in mul...Spermatogenesis is a complicated and poorly understood process that relies on the precise regulation of the self-renewal and differentiation of spermatogonia. In many organisms, micro RNAs(mi RNAs) are involved in multiple developmental processes as critical regulators of transcriptional and post-transcriptional gene silencing. This study investigated the expression pattern of mi RNAs in type B spermatogonia cells(BSc) and primary spermatocytes(PSc) of mice, using a high-throughput small RNA sequencing system. The results revealed that the expression levels of Let-7 family mi RNAs were remarkably high in both cell types. Furthermore, the expression levels of mi R-21, mi R-140-3p, mi R-103, mi R-30 a, mi R-101 b and mi R-99 b were decreased during the transformation from BSc to PSc. These mi RNAs target vital genes that participate in apoptosis, cell proliferation and differentiation, junction assembly and cell cycle regulation. These results highlight the indispensable role of mi RNAs in spermatogenesis.展开更多
文摘哺乳动物胚胎发育受遗传和表观遗传的共同调控。精子作为重要的雄性生殖细胞,通过受精过程,将这些信息传递给卵子,进而影响子代的发育。精子中携带有丰富的表观遗传信息,其中小非编码RNAs(small noncoding RNAs,sncRNAs)在精子发育不同阶段发挥重要的作用,包括调控基因表达、介导蛋白质翻译,以及参与精子的表观遗传信息传递等。环境暴露包括饮食变化、毒性物质暴露和心理压力等。现有的研究表明,环境因素不仅影响机体健康,还可能导致生殖系统配子(精子与/或卵子)表观遗传信息的改变。越来越多的证据表明,亲本在环境暴露后发生的获得性性状变化,可通过配子的表观遗传信息传递给后代,即产生跨代遗传。本综述主要讨论因环境因素引起的获得性性状,可通过精子sncRNAs变化,产生跨代遗传,并影响胚胎发育及子代健康。本综述的讨论主要集中在tRNA来源的小RNAs(transfer RNA-derived small RNAs,tsRNAs)、微RNA(microRNAs,miRNAs)和PIWI相互作用RNAs(PIWI-interacting RNAs,piRNAs),并涉及到最近在精子中发现有大量表达的rRNA来源的小RNAs(risbosome-RNA derived small RNAs,rsRNAs)。此外,本文还进一步探讨了环境因素影响精子sncRNAs表达变化的可能机制。通过对上述内容的综述,将更好地理解精子sncRNAs在跨代遗传中的作用,促进表观遗传学领域的新研究,加深对基本生命过程的理解。
基金supported by the National Natural Science Foundation of China(81170616,81072093,30671092,81302323,31100915)the Natural Science Foundation of Hebei Province(C2014209140,C2009001260,C2012401039,H2013209194,C2013209024)the Scientific and Technical Supporting Programs of Hebei Province(10276109D)
文摘Spermatogenesis is a complicated and poorly understood process that relies on the precise regulation of the self-renewal and differentiation of spermatogonia. In many organisms, micro RNAs(mi RNAs) are involved in multiple developmental processes as critical regulators of transcriptional and post-transcriptional gene silencing. This study investigated the expression pattern of mi RNAs in type B spermatogonia cells(BSc) and primary spermatocytes(PSc) of mice, using a high-throughput small RNA sequencing system. The results revealed that the expression levels of Let-7 family mi RNAs were remarkably high in both cell types. Furthermore, the expression levels of mi R-21, mi R-140-3p, mi R-103, mi R-30 a, mi R-101 b and mi R-99 b were decreased during the transformation from BSc to PSc. These mi RNAs target vital genes that participate in apoptosis, cell proliferation and differentiation, junction assembly and cell cycle regulation. These results highlight the indispensable role of mi RNAs in spermatogenesis.