A dynamical dq model is proposed for a linear flux-switching permanent magnet(LFSPM) machine which is suitable for high-precision control applications.The operation principle of the prototype machine is analyzed usi...A dynamical dq model is proposed for a linear flux-switching permanent magnet(LFSPM) machine which is suitable for high-precision control applications.The operation principle of the prototype machine is analyzed using the finite element method(FEM),and the parameters,such as the back electromotive force(EMF) and the phase flux linkage,are calculated.The calculated and measured results reveal that the back EMF and the flux linkage are essentially sinusoidal,and the variation of the phase flux linkage profile of the LFSPM machine is similar to that of the linear surface permanent magnet(LSPM) machine.Based on this,a dynamical dq model and a simulation control model are proposed.The simulation results are compared with the test results obtained from a DSP-based control platform,which verifies that the model is correct and effective.Moreover,the model can be used for design optimization and control development.展开更多
The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement pr...The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.展开更多
基金The National Natural Science Foundation of China (No.41076054)
文摘A dynamical dq model is proposed for a linear flux-switching permanent magnet(LFSPM) machine which is suitable for high-precision control applications.The operation principle of the prototype machine is analyzed using the finite element method(FEM),and the parameters,such as the back electromotive force(EMF) and the phase flux linkage,are calculated.The calculated and measured results reveal that the back EMF and the flux linkage are essentially sinusoidal,and the variation of the phase flux linkage profile of the LFSPM machine is similar to that of the linear surface permanent magnet(LSPM) machine.Based on this,a dynamical dq model and a simulation control model are proposed.The simulation results are compared with the test results obtained from a DSP-based control platform,which verifies that the model is correct and effective.Moreover,the model can be used for design optimization and control development.
文摘The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.