期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
叠层模型驱动的书法文字识别方法研究 被引量:1
1
作者 麻斯亮 许勇 《自动化学报》 EI CAS CSCD 北大核心 2024年第5期947-957,共11页
基于二维图像的书法文字识别是指利用计算机视觉技术对书法文字单字图像进行识别,在古籍研究和文化传播中具有重要应用.目前书法文字识别技术已经取得了相当不错的进展,但依旧面临很多挑战,比如复杂多变的字形可能导致的识别误差,汉字... 基于二维图像的书法文字识别是指利用计算机视觉技术对书法文字单字图像进行识别,在古籍研究和文化传播中具有重要应用.目前书法文字识别技术已经取得了相当不错的进展,但依旧面临很多挑战,比如复杂多变的字形可能导致的识别误差,汉字本身又存在较多形近字,且汉字字符类别数与其他语言文字相比更多,书法文字图像普遍存在类内差距大、类间差距小的问题.为解决这些问题,提出叠层模型驱动的书法文字识别方法(Stacked-model driven character recognition,SDCR),通过使用数据预处理、节点分离策略和叠层模型对现有单一分类模型进行改进,按照字体类别对同一类别不同字体风格的文字进行二次划分;针对类间差距小的问题,根据书法文字训练集图像识别置信度对形近字进行子集划分,针对子集进行嵌套模型增强训练,在测试阶段利用叠层模型对形近字进行二次识别,提升形近字的识别准确率.为了验证该方法的鲁棒性,在自主生成的SCUT_Calligraphy数据集和CASIA-HWDB 1.1,CASIA-AHCDB公开数据集上进行训练和测试,实验结果表明该方法在上述数据集的识别准确率均有较大幅度提升,在CASIA-HWDB 1.1、CASIA-AHCDB和自建数据集SCUT_Calligraphy上测试准确率分别达到96.33%、99.51%和99.90%,证明了该方法的有效性. 展开更多
关键词 书法文字识别 模型驱动 节点分离 叠层模型 精度学习
下载PDF
提高多目标输出神经网络模型泛化能力和预测精度的方法 被引量:4
2
作者 刘晓莉 杨灵娥 宋春玲 《佛山科学技术学院学报(自然科学版)》 CAS 2008年第1期31-33,共3页
为提高BP网络模型的泛化能力和学习精度,从神经网络的结构、参数设计,以及基本训练算法的选定等方面进行研究,给出了程序设计过程,提出了有效的解决方法。
关键词 BP网络 MATLAB 泛化能力 学习精度 训练算法
下载PDF
支持向量机增量学习方法及应用 被引量:3
3
作者 白冬婴 王晓丹 马飞 《航空计算技术》 2007年第4期23-26,共4页
基于支持向量机的增量学习作为一种数据挖掘与知识发现技术,已在目标识别,网页分类等诸多领域得到应用。在概述其机理的基础上,从如何提高学习精度与学习速度着手,分析了现有算法及其优缺点和需要改进的问题;论述了增量学习的应用现状,... 基于支持向量机的增量学习作为一种数据挖掘与知识发现技术,已在目标识别,网页分类等诸多领域得到应用。在概述其机理的基础上,从如何提高学习精度与学习速度着手,分析了现有算法及其优缺点和需要改进的问题;论述了增量学习的应用现状,并提出进一步的研究方向。 展开更多
关键词 支持向量机 增量学习 学习精度 学习速度
下载PDF
Re-identifying beef cattle using improved AlignedReID++
4
作者 YING Xiaoyi ZHAO Jizheng +7 位作者 YANG Lingling ZHOU Xinyi WANG Lei GAO Yannian ZAN Linsen YANG Wucai LIU Han SONG Huaibo 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期132-146,共15页
Accurate and continuous identification of individual cattle is crucial to precision farming in recent years.It is also the prerequisite to monitor the individual feed intake and feeding time of beef cattle at medium t... Accurate and continuous identification of individual cattle is crucial to precision farming in recent years.It is also the prerequisite to monitor the individual feed intake and feeding time of beef cattle at medium to long distances over different cameras.However,beef cattle can tend to frequently move and change their feeding position during feeding.Furthermore,the great variations in their head direction and complex environments(light,occlusion,and background)can also lead to some difficulties in the recognition,particularly for the bio-similarities among individual cattle.Among them,AlignedReID++model is characterized by both global and local information for image matching.In particular,the dynamically matching local information(DMLI)algorithm has been introduced into the local branch to automatically align the horizontal local information.In this research,the AlignedReID++model was utilized and improved to achieve the better performance in cattle re-identification(ReID).Initially,triplet attention(TA)modules were integrated into the BottleNecks of ResNet50 Backbone.The feature extraction was then enhanced through cross-dimensional interactions with the minimal computational overhead.Since the TA modules in AlignedReID++baseline model increased the model size and floating point operations(FLOPs)by 0.005 M and 0.05 G,the rank-1 accuracy and mean average precision(mAP)were improved by 1.0 percentage points and 2.94 percentage points,respectively.Specifically,the rank-1 accuracies were outperformed by 0.86 percentage points and 0.12 percentage points,respectively,compared with the convolution block attention module(CBAM)and efficient channel attention(ECA)modules,although 0.94 percentage points were lower than that of squeeze-and-excitation(SE)modules.The mAP metric values were exceeded by 0.22,0.86 and 0.12 percentage points,respectively,compared with the SE,CBAM,and ECA modules.Additionally,the Cross-Entropy Loss function was replaced with the CosFace Loss function in the global branch of baseline model.CosFace Loss and Hard Triplet Loss were jointly employed to train the baseline model for the better identification on the similar individuals.AlignedReID++with CosFace Loss was outperformed the baseline model by 0.24 and 0.92 percentage points in the rank-1 accuracy and mAP,respectively,whereas,AlignedReID++with ArcFace Loss was exceeded by 0.36 and 0.56 percentage points,respectively.The improved model with the TA modules and CosFace Loss was achieved in a rank-1 accuracy of 94.42%,rank-5 accuracy of 98.78%,rank-10 accuracy of 99.34%,mAP of 63.90%,FLOPs of 5.45 G,frames per second(FPS)of 5.64,and model size of 23.78 M.The rank-1 accuracies were exceeded by 1.84,4.72,0.76 and 5.36 percentage points,respectively,compared with the baseline model,part-based convolutional baseline(PCB),multiple granularity network(MGN),and relation-aware global attention(RGA),while the mAP metrics were surpassed 6.42,5.86,4.30 and 7.38 percentage points,respectively.Meanwhile,the rank-1 accuracy was 0.98 percentage points lower than TransReID,but the mAP metric was exceeded by 3.90 percentage points.Moreover,the FLOPs of improved model were only 0.05 G larger than that of baseline model,while smaller than those of PCB,MGN,RGA,and TransReID by 0.68,6.51,25.4,and 16.55 G,respectively.The model size of improved model was 23.78 M,which was smaller than those of the baseline model,PCB,MGN,RGA,and TransReID by 0.03,2.33,45.06,14.53 and 62.85 M,respectively.The inference speed of improved model on a CPU was lower than those of PCB,MGN,and baseline model,but higher than TransReID and RGA.The t-SNE feature embedding visualization demonstrated that the global and local features were achieve in the better intra-class compactness and inter-class variability.Therefore,the improved model can be expected to effectively re-identify the beef cattle in natural environments of breeding farm,in order to monitor the individual feed intake and feeding time. 展开更多
关键词 method IDENTIFY beef cattle precision livestock re-identification AlignedReID++ deep learning
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision
5
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
基于联邦学习的边缘智能协同计算与隐私保护方法 被引量:8
6
作者 刘庆祥 许小龙 +1 位作者 张旭云 窦万春 《计算机集成制造系统》 EI CSCD 北大核心 2021年第9期2604-2610,共7页
联邦学习中,终端将更新后的模型参数值,而不是原始数据传递至服务器,从而成为保障边缘计算中数据隐私安全的关键技术。因此,提出了基于联邦学习的边缘计算方法(FLBEC),在保护用户隐私的同时,减少终端参与联邦学习的开销。首先设计了基... 联邦学习中,终端将更新后的模型参数值,而不是原始数据传递至服务器,从而成为保障边缘计算中数据隐私安全的关键技术。因此,提出了基于联邦学习的边缘计算方法(FLBEC),在保护用户隐私的同时,减少终端参与联邦学习的开销。首先设计了基于联邦学习的边缘计算系统架构,提出了隐私保护机制。分析了终端参与联邦学习时间和能耗,提出了研究的目标,即保护边缘计算中用户隐私,同时在保证精度的前提下,减少联邦学习时间和能耗。然后,从参与者选择、本地更新和全局聚合3个方面提出了改进后的联邦学习算法。最后通过对比实验验证了在FLBEC算法中,绝大多数终端在达到目标精度的前提下可以大幅度地降低联邦学习时间和能耗,从而减少联邦学习开销,表明了FLBEC算法的优越性。 展开更多
关键词 联邦学习 边缘计算 隐私保护 终端学习精度
下载PDF
面向对象概念格上的近似概念及概念认知
7
作者 王大利 许晴媛 +2 位作者 何丽琴 张培林 李进金 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期412-422,共11页
针对概念认知问题,该文通过形式背景中任意对象(属性)集在面向对象(属性)概念格中形成的下近似概念外延(内涵)和上近似概念外延(内涵),探讨了面向对象(属性)概念、面向对象(属性)下近似概念、面向对象(属性)上近似概念之间的关系,得到... 针对概念认知问题,该文通过形式背景中任意对象(属性)集在面向对象(属性)概念格中形成的下近似概念外延(内涵)和上近似概念外延(内涵),探讨了面向对象(属性)概念、面向对象(属性)下近似概念、面向对象(属性)上近似概念之间的关系,得到在面向对象(属性)概念格中生成下、上近似概念的一种有效方法。对于面向对象概念格中任一概念,由其外延形成的下近似概念和上近似概念是它本身;对于面向属性概念格中任一概念,由其内涵形成的下近似概念和上近似概念也是它本身。同时通过举例说明。另外,将近似概念应用于面向对象(属性)概念格中进行概念认知并给出相应算法。对于给定的任一对象(属性)集线索,通过其形成的近似集去逼近该线索,得到1个精确概念或者2个近似概念,以进行概念认知。同时给出概念学习精度来衡量概念认知的准确性。 展开更多
关键词 面向对象 面向属性 概念格 近似概念 概念认知 概念学习精度
下载PDF
超闭球CMAC的性能分析及多CMAC结构 被引量:17
8
作者 段培永 任化芝 邵惠鹤 《自动化学报》 EI CSCD 北大核心 2000年第4期563-567,共5页
如何选择合适网络参数是传统 CMAC(Cerebellar Model Articulation Controller)应用中的一个难题 .采用泛化均方差 (GMSE)和学习均方差 (L MSE)来分别评价超闭球 CMAC的泛化能力与记忆精度 ,并引入权调整率的概念 ,来研究 CMAC结构参数... 如何选择合适网络参数是传统 CMAC(Cerebellar Model Articulation Controller)应用中的一个难题 .采用泛化均方差 (GMSE)和学习均方差 (L MSE)来分别评价超闭球 CMAC的泛化能力与记忆精度 ,并引入权调整率的概念 ,来研究 CMAC结构参数与学习性能的关系 .研究结果表明 ,在样本分布和量化级数不变时 ,泛化均方差和学习均方差是权调整率的非增函数 .因此超闭球 CMAC在满足存储空间和计算速度的要求下尽量使得权调整率较大 .还提出了并行CMAC结构以进一步提高单个超闭球 CMAC的非线性逼近能力 . 展开更多
关键词 CMAC 神经网络 泛化能力 学习精度
下载PDF
INTELLIGENT PRECISION CONTROL IN CNC GRINDING
9
作者 田新诚 王宁生 袁信 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期95-99,共5页
The development of intelligent control techniques provides powerful means for the control of machine tools. In this paper, a intelligent control technique and an algorithm for precision control of CNC grinding of cera... The development of intelligent control techniques provides powerful means for the control of machine tools. In this paper, a intelligent control technique and an algorithm for precision control of CNC grinding of ceramic chips are introduced. In the process of ceramic chip CNC grinding, the dimension of the chips tends to get larger and the dimensional error to exceed the tolerance as the number of the chips increases which are machined on the same part program. There are many factors leading to the occurrence of the error and the law of error variation is very complicated. With the introduced intelligent self learning error compensation technique, the CNC system can improve the control strategy to compensate the error automatically. The simulational result is also given. 展开更多
关键词 intelligent control self learning precision control ceramic chip
下载PDF
基于MATLAB的BP神经网络算法在多元非线性系统建模中的应用 被引量:2
10
作者 刘晓莉 戎海武 《软件导刊》 2013年第10期66-67,共2页
介绍了MATLAB中BP网络算法的基本训练函数。结合案例,探讨了多元非线性系统建模方法,给出了程序设计过程,对网络学习精度等进行了试验研究。
关键词 MATLAB BP神经网络 多元非线性系统 训练算法 学习精度
下载PDF
基于HCMAC神经网络最佳温湿度匹配库的建立
11
作者 李慧 段培永 陈明九 《自动化仪表》 CAS 2006年第9期39-41,共3页
影响人体热舒适性的主要因素是温度和湿度,人体热舒适性又容易受人体个体差异的影响。利用HCMAC神经网络模型具有的结构简单、学习速度快、泛化能力强、易于硬件和软件实现等特点,在智能型热量计量与温湿度调节一体化装置中,根据用户对... 影响人体热舒适性的主要因素是温度和湿度,人体热舒适性又容易受人体个体差异的影响。利用HCMAC神经网络模型具有的结构简单、学习速度快、泛化能力强、易于硬件和软件实现等特点,在智能型热量计量与温湿度调节一体化装置中,根据用户对人居环境的不同温度和湿度的需求进行学习、联想记忆,实现了最佳温湿度匹配库的建立。运行结果表明,该方法学习速度快、精度高,可满足不同人的舒适性要求,大大提高人居环境的品质。 展开更多
关键词 超闭球小脑模型 学习精度 温湿度 匹配库
下载PDF
基于统计学法则的连续属性值划分方法
12
作者 高洪涛 陆伟 杨余旺 《科学技术与工程》 北大核心 2018年第16期237-240,共4页
目前决策树中很多分类算法例如ID3/C4.5/C5.0等都依赖于离散的属性值,并且希望将它们的值域划分到一个有限区间。利用统计学法则,提出一种新的连续属性值的划分方法;该方法通过统计学法则来发现精准的合并区间。另外在此基础上,为提高... 目前决策树中很多分类算法例如ID3/C4.5/C5.0等都依赖于离散的属性值,并且希望将它们的值域划分到一个有限区间。利用统计学法则,提出一种新的连续属性值的划分方法;该方法通过统计学法则来发现精准的合并区间。另外在此基础上,为提高决策树算法分类学习性能,提出一种启发式的划分算法来获得理想的划分结果.在UCI真实数据集上进行仿真实验.结果表明获得了一个比较高的分类学习精度、与常见的划分算法比较起来有很好的分类学习能力。 展开更多
关键词 连续属性值 学习精度 统计学法则 分类算法
下载PDF
A Novel Hidden Danger Prediction Method in CloudBased Intelligent Industrial Production Management Using Timeliness Managing Extreme Learning Machine
13
作者 Xiong Luo Xiaona Yang +3 位作者 Weiping Wang Xiaohui Chang Xinyan Wang Zhigang Zhao 《China Communications》 SCIE CSCD 2016年第7期74-82,共9页
To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A mac... To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A machine learning algorithm that uses timeliness managing extreme learning machine is utilized in this article to achieve the above prediction.Compared with traditional learning algorithms,extreme learning machine(ELM) exhibits high performance because of its unique feature of a high generalization capability at a fast learning speed.Timeliness managing ELM is proposed by incorporating timeliness management scheme into ELM.When using the timeliness managing ELM scheme to predict hidden dangers,newly incremental data could be added prior to the historical data to maximize the contribution of the newly incremental training data,because the incremental data may be able to contribute reasonable weights to represent the current production situation according to practical analysis of accidents in some industrial productions.Experimental results from a coal mine show that the use of timeliness managing ELM can improve the prediction accuracy of hidden dangers with better stability compared with other similar machine learning methods. 展开更多
关键词 prediction incremental learning extreme learning machine cloud service
下载PDF
Applying machine learning approaches to improving the accuracy of breast-tumour diagnosis via fine needle aspiration
14
作者 袁前飞 CAI Cong-zhong +1 位作者 XIAO Han-guang LIU Xing-hua 《Journal of Chongqing University》 CAS 2007年第1期1-7,共7页
Diagnosis and treatment of breast cancer have been improved during the last decade; however, breast cancer is still a leading cause of death among women in the whole world. Early detection and accurate diagnosis of th... Diagnosis and treatment of breast cancer have been improved during the last decade; however, breast cancer is still a leading cause of death among women in the whole world. Early detection and accurate diagnosis of this disease has been demonstrated an approach to long survival of the patients. As an attempt to develop a reliable diagnosing method for breast cancer, we integrated support vector machine (SVM), k-nearest neighbor and probabilistic neural network into a complex machine learning approach to detect malignant breast tumour through a set of indicators consisting of age and ten cellular features of fine-needle aspiration of breast which were ranked according to signal-to-noise ratio to identify determinants distinguishing benign breast tumours from malignant ones. The method turned out to significantly improve the diagnosis, with a sensitivity of 94.04%, a specificity of 97.37%, and an overall accuracy up to 96.24% when SVM was adopted with the sigmoid kernel function under 5-fold cross validation. The results suggest that SVM is a promising methodology to be further developed into a practical adjunct implement to help discerning benign and malignant breast tumours and thus reduce the incidence of misdiagnosis. 展开更多
关键词 breast cancer DIAGNOSIS machine learning approach fine needle aspirate feature ranking/filtering
下载PDF
A Method of Identifying Electromagnetic Radiation Sources by Using Support Vector Machines 被引量:2
15
作者 石丹 高攸纲 《China Communications》 SCIE CSCD 2013年第7期36-43,共8页
Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machi... Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics. 展开更多
关键词 support vector machines electro- magnetic radiation sources spatial characteistics IDENTIFICATION
下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:38
16
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 Improved PSO algorithm BP neural network Coal mine safety production Early warning
下载PDF
Variable Selection Procedures in Linear Regression Models with Screening Consistency Property
17
作者 XIE Yanxi XIA Zhijie +1 位作者 WANG Xiaoli YAN Ruixia 《International English Education Research》 2017年第1期34-37,共4页
There are two fundamental goals in statistical learning: identifying relevant predictors and ensuring high prediction accuracy. The first goal, by means of variable selection, is of particular importance when the tru... There are two fundamental goals in statistical learning: identifying relevant predictors and ensuring high prediction accuracy. The first goal, by means of variable selection, is of particular importance when the true underlying model has a sparse representation. Discovering relevant predictors can enhance the performance of the prediction for the fitted model. Usually an estimate is considered desirable if it is consistent in terms of both coefficient estimate and variable selection. Hence, before we try to estimate the regression coefficients β , it is preferable that we have a set of useful predictors m hand. The emphasis of our task in this paper is to propose a method, in the aim of identifying relevant predictors to ensure screening consistency in variable selection. The primary interest is on Orthogonal Matching Pursuit(OMP). 展开更多
关键词 variable selection orthogonal matching pursuit high dimensional setup screening consistency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部