To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an impo...Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.展开更多
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.
基金National Natural Science Foundation of China,No.41571077,No.41171318The Fundamental Research Funds for the Central Universities
文摘Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.