The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite elemen...The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.展开更多
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ...To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.展开更多
Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown o...Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.展开更多
This study represents an approach to investigate a force controlled short-stroke honing process and especially the dependency between the type of finishing tool and the resulting shape accuracy. Based on a finite elem...This study represents an approach to investigate a force controlled short-stroke honing process and especially the dependency between the type of finishing tool and the resulting shape accuracy. Based on a finite element analysis and a validation with special pressure measurement films, the contact mechanisms between the finishing tool and the workpiece are analyzed. In order to achieve a high surface quality without reducing the shape accuracy, the influence of different finishing tools with an individual material behavior on the resulting shape accuracy have been analyzed. With a variation of the geometry of the finishing tool as well as of the workpiece, different loading cases between the tool and the workpiece are considered in the finite element simulation. These results, combined with experimental investigations with different finishing films lead to an improvement of the surface quality without reducing the shape accuracy.展开更多
In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides wi...In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.展开更多
Wave equation migration is often applied to solve seismic imaging problems. Usually, the finite difference method is used to obtain the numerical solution of the wave equation. In this paper, the arbitrary difference ...Wave equation migration is often applied to solve seismic imaging problems. Usually, the finite difference method is used to obtain the numerical solution of the wave equation. In this paper, the arbitrary difference precise integration (ADPI) method is discussed and applied in seismic migration. The ADPI method has its own distinctive idea. When dispersing coordinates in the space domain, it employs a relatively unrestrained form instead of the one used by the conventional finite difference method. Moreover, in the time domain it adopts the sub domain precise integration method. As a result, it not only takes the merits of high precision and narrow bandwidth, but also can process various boundary conditions and describe the feature of an inhomogeneous medium better. Numerical results show the benefit of the presented algorithm using the ADPI method.展开更多
A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-...A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-cyclical pseudo-random sequences.However,the finite precision brings short period and odd points which obstruct application of chaos theory seriously in digital communication systems.Perturbation in chaotic systems is a possible efficient method for solving finite precision problems,but former researches are limited in uniform distribution maps.The proposed internal perturbation can work on both uniform and non-uniform distribution chaotic maps like Chebyshev map and Logistic map.By simulations,results show that the proposed internal perturbation extends sequence periods and eliminates the odd points,so as to improve chaotic performances of perturbed chaotic sequences.展开更多
To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die ...To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.展开更多
基金Project(11172258)supported by the National Natural Science Foundation of China
文摘The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.
文摘To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.
基金Project(2007BAF02B12)supported by the National Science Technology Support Program of ChinaProjects(E2011203090,E2012203028)supported by the Natural Science Foundation of Hebei Province,China
文摘Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.
文摘This study represents an approach to investigate a force controlled short-stroke honing process and especially the dependency between the type of finishing tool and the resulting shape accuracy. Based on a finite element analysis and a validation with special pressure measurement films, the contact mechanisms between the finishing tool and the workpiece are analyzed. In order to achieve a high surface quality without reducing the shape accuracy, the influence of different finishing tools with an individual material behavior on the resulting shape accuracy have been analyzed. With a variation of the geometry of the finishing tool as well as of the workpiece, different loading cases between the tool and the workpiece are considered in the finite element simulation. These results, combined with experimental investigations with different finishing films lead to an improvement of the surface quality without reducing the shape accuracy.
基金Foundation item: Supported by the NSF of China(10371113)Supported by the Foundation of Overseas Scholar of China(2001(119))Supported by the project of Creative Engineering of Province of China(2002(219))
文摘In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.
文摘Wave equation migration is often applied to solve seismic imaging problems. Usually, the finite difference method is used to obtain the numerical solution of the wave equation. In this paper, the arbitrary difference precise integration (ADPI) method is discussed and applied in seismic migration. The ADPI method has its own distinctive idea. When dispersing coordinates in the space domain, it employs a relatively unrestrained form instead of the one used by the conventional finite difference method. Moreover, in the time domain it adopts the sub domain precise integration method. As a result, it not only takes the merits of high precision and narrow bandwidth, but also can process various boundary conditions and describe the feature of an inhomogeneous medium better. Numerical results show the benefit of the presented algorithm using the ADPI method.
基金Supported by the National Basic Research Program of China(No.2007CB310606)
文摘A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-cyclical pseudo-random sequences.However,the finite precision brings short period and odd points which obstruct application of chaos theory seriously in digital communication systems.Perturbation in chaotic systems is a possible efficient method for solving finite precision problems,but former researches are limited in uniform distribution maps.The proposed internal perturbation can work on both uniform and non-uniform distribution chaotic maps like Chebyshev map and Logistic map.By simulations,results show that the proposed internal perturbation extends sequence periods and eliminates the odd points,so as to improve chaotic performances of perturbed chaotic sequences.
基金Project(51375042)supported by the National Natural Science Foundation of ChinaProject supported by Beijing Laboratory of Modern Transport Metal Materials and Processing Technology,China
文摘To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.