Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to t...Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.展开更多
To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations ...To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations in finite region was applied to the linear water hammer problem. With the given velocity function at the valve and the introduction of curve integration independent of integral path, the exact analytic solution of dimensionless water hammer pressure was obtained in the course of valve closing. Based on the definition of eigen wave height, optimal eigen wave height and observation time, the control goal of water hammer pressure and the judgment rule of the optimal eigen wave height were determined, then the optimal velocity function in the calculated example was derived, which can reduce the water hammer pressure maximally. According to this function, a valve closing program was set, and the optimal control of water hammer could be realized.展开更多
文摘Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50478025 and 50506009) the 46th China Postdoctoral Science Foundation(Grant No.20090460912)
文摘To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations in finite region was applied to the linear water hammer problem. With the given velocity function at the valve and the introduction of curve integration independent of integral path, the exact analytic solution of dimensionless water hammer pressure was obtained in the course of valve closing. Based on the definition of eigen wave height, optimal eigen wave height and observation time, the control goal of water hammer pressure and the judgment rule of the optimal eigen wave height were determined, then the optimal velocity function in the calculated example was derived, which can reduce the water hammer pressure maximally. According to this function, a valve closing program was set, and the optimal control of water hammer could be realized.