This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. R...This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. Robot calibrations can be classified into model-based and modeless methods. A model-based calibration method normally requires that the practitioners understand the kinematics of the robot therefore may pose a challenger for field engineers. An alternative yet effective means for robot calibration is to use a modeless method; however with such a method there is a conflict between the calibration accuracy of the robot and the number of grid points used in the calibration task. In this paper, an interval type-2 fuzzy interpolation system is applied to improve the compensation accuracy of the robot in its 3D workspace. An on-line type-2 fuzzy inference system is implemented to meet the needs of on-line robot trajectory planning and control. The simulated results given in this paper show that not only robot compensation accuracy can be greatly improved, but also the calibration process can be significantly simplified, and it is more suitable for practical applications.展开更多
文摘This paper is an extended research for a novel technique used in the pose error compensations of the robot and manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. Robot calibrations can be classified into model-based and modeless methods. A model-based calibration method normally requires that the practitioners understand the kinematics of the robot therefore may pose a challenger for field engineers. An alternative yet effective means for robot calibration is to use a modeless method; however with such a method there is a conflict between the calibration accuracy of the robot and the number of grid points used in the calibration task. In this paper, an interval type-2 fuzzy interpolation system is applied to improve the compensation accuracy of the robot in its 3D workspace. An on-line type-2 fuzzy inference system is implemented to meet the needs of on-line robot trajectory planning and control. The simulated results given in this paper show that not only robot compensation accuracy can be greatly improved, but also the calibration process can be significantly simplified, and it is more suitable for practical applications.