期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EMD-LSTM的重介分选精煤灰分时间序列预测方法研究 被引量:8
1
作者 程凯 王然风 付翔 《煤炭工程》 北大核心 2022年第2期133-139,共7页
针对重介分选的智能化发展需求,根据重介精煤灰分数据噪声特征及灰分过程控制对灰分预测精度、预测时长的要求,提出了基于EMD-LSTM的重介精煤灰分时间序列预测方法。首先,通过经验模态分解(EMD)算法将重介精煤灰分时序数列中的不同尺度... 针对重介分选的智能化发展需求,根据重介精煤灰分数据噪声特征及灰分过程控制对灰分预测精度、预测时长的要求,提出了基于EMD-LSTM的重介精煤灰分时间序列预测方法。首先,通过经验模态分解(EMD)算法将重介精煤灰分时序数列中的不同尺度分量逐级分解出来,生成一系列具有相同特征尺度的本征模函数,从而去除一定噪声影响;其次,进一步借助于长短期记忆(LSTM)神经网络可解决数据的长期依赖问题,从而在长时间视野预测方面表现更为突出。该方法应用于实际数据集的短期预测,实验结果表明,对LSTM神经网络进行参数寻优后,基于EMDLSTM的重介分选精煤灰分指标时间序列预测方法中,去除IMF1分量的模型所得的预测结果具有最小的标准差σ(0.1481)和平均绝对误差λ(0.1184),去除噪声后的EMD-LSTM模型可使预测准确性显著提高,能够有效解决精煤灰分预测的问题。 展开更多
关键词 重介 精煤灰分时序数列 噪声 经验模态解(EMD) 长短期记忆神经网络(LSTM) 煤灰预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部