We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear ...We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear Schrfidinger equation, which describes the propagation of optical pulses in optical fibers, and investigate the dynamical features of solitons by analyzing the exact analytical solutions in different physical situations. The results show that under the appropriate condition, not only the group velocity dispersion and the nonlinearity, but also the loss/gain can be used to manipulate the light pulse.展开更多
Of recent increasing interest in the area of fractional calculus and nonlinear dynamics are fractional differential-difference equations. This study is devoted to a local fractional differential-difference equation wh...Of recent increasing interest in the area of fractional calculus and nonlinear dynamics are fractional differential-difference equations. This study is devoted to a local fractional differential-difference equation which is related to a nonlinear electrical transmission line. Explicit traveling wave solutions(kink/antikink solitons, singular,periodic, rational) are obtained via the discrete tanh method coupled with the fractional complex transform.展开更多
In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutio...In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.展开更多
基金Supported by National Natural Science Foundation of China under Grants Nos.60525417,and 10874235by NKBRSFC under Grant Nos.2005CB724508,2006CB921400,2009CB930704,and 2010CB922904
文摘We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear Schrfidinger equation, which describes the propagation of optical pulses in optical fibers, and investigate the dynamical features of solitons by analyzing the exact analytical solutions in different physical situations. The results show that under the appropriate condition, not only the group velocity dispersion and the nonlinearity, but also the loss/gain can be used to manipulate the light pulse.
文摘Of recent increasing interest in the area of fractional calculus and nonlinear dynamics are fractional differential-difference equations. This study is devoted to a local fractional differential-difference equation which is related to a nonlinear electrical transmission line. Explicit traveling wave solutions(kink/antikink solitons, singular,periodic, rational) are obtained via the discrete tanh method coupled with the fractional complex transform.
基金Supported by the National Natural Science Foundation of China under Grant No.61671227the Natural Science Foundation of Shandong Province under Grant No.ZR2014AM018
文摘In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.