Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartmen...Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spa- tial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. Conclusion The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.展开更多
With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve....With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve.Currently,power system opti-mization dispatching is always formulated as a discrete-time scheduling model.In this paper,we first demonstrate through an example that the upper and lower bounds of spinning reserve offered by a unit,given in the discrete-time model framework as constraints,is unreachable.This causes the problem that the reserve delivery obtained by the discrete-time scheduling model cannot be carried out precisely.From the detailed analysis of the ramp rate constraints,it is proved that the reachable upper and lower bounds of spinning reserve in every period can be expressed as functions of two variables,i.e.,generation level of unit at the start and end of this period.Thus,a new method is provided to calculate the upper and lower bounds of spinning reserve which are reachable in average.Furthermore,a new model based on this proposed method for joint scheduling of generation and reserve is presented,which considers the ability to realize the scheduled energy and reserve delivery.It converts the opti-mization based accurate scheduling for generation and reserve of power system from a continuous-time optimal control prob-lem to a nonlinear programming problem.Therefore,the proposed model can avoid the difficulties in solving a continu-ous-time optimal control problem.Based on the sequential quadratic programming method,numerical experiments for sched-uling electric power production systems are performed to evaluate the model and the results show that the new model is highly effective.展开更多
基金supported by the grants from National Natural Science Foundation of China (No. 10872069)
文摘Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spa- tial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. Conclusion The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.
基金supported by the National Natural Science Foundation of China(Grant Nos.60921003,60736027,61174161,60974101)the Spe-cialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20090121110022)+3 种基金the Fundamental Research Funds for the Central Universities of Xiamen University(Grant Nos.2011121047,201112G018,CXB2011035)the Key Research Project of Fujian Province of China(Grant No.2009H0044)Xiamen University National 211 3rd Period Project of China)(Grant No.0630-E72000)the Natural Sci-ence Foundation of Fujian Province,China(Grant No.2011J05154)
文摘With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve.Currently,power system opti-mization dispatching is always formulated as a discrete-time scheduling model.In this paper,we first demonstrate through an example that the upper and lower bounds of spinning reserve offered by a unit,given in the discrete-time model framework as constraints,is unreachable.This causes the problem that the reserve delivery obtained by the discrete-time scheduling model cannot be carried out precisely.From the detailed analysis of the ramp rate constraints,it is proved that the reachable upper and lower bounds of spinning reserve in every period can be expressed as functions of two variables,i.e.,generation level of unit at the start and end of this period.Thus,a new method is provided to calculate the upper and lower bounds of spinning reserve which are reachable in average.Furthermore,a new model based on this proposed method for joint scheduling of generation and reserve is presented,which considers the ability to realize the scheduled energy and reserve delivery.It converts the opti-mization based accurate scheduling for generation and reserve of power system from a continuous-time optimal control prob-lem to a nonlinear programming problem.Therefore,the proposed model can avoid the difficulties in solving a continu-ous-time optimal control problem.Based on the sequential quadratic programming method,numerical experiments for sched-uling electric power production systems are performed to evaluate the model and the results show that the new model is highly effective.