期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
半精纺纺纱系统中减少毛粒的探讨
1
作者 王焕敏 朱若英 刘兰芳 《毛纺科技》 CAS 北大核心 2008年第3期30-32,共3页
文章主要介绍了半精纺纺纱系统以及半精纺纺纱系统中产生毛粒的原因;通过试验探讨了纺纱梳棉工序中如何减少毛粒的关键技术措施,从理论上分析了混纺时选择化纤最佳长度、细度的原则,指出了预处理工序、梳棉、细纱工序中应采取的具体措施。
关键词 精纺纺纱系统 毛粒 纤维长度
下载PDF
浅析半精纺及其毛羽问题 被引量:1
2
作者 苑淑花 李济群 《上海毛麻科技》 2007年第4期11-13,共3页
介绍了新含义下半精纺纺纱系统及其工艺技术要点,特别探讨了其纺纱过程中的毛羽问题及其解决措施。
关键词 纺纱 精纺系统 毛羽
下载PDF
浅谈羊绒纺纱现状 被引量:4
3
作者 季延 李龙 《化纤与纺织技术》 2009年第2期34-37,共4页
概述了羊绒纺纱现状。羊绒纺纱系统包括粗纺系统、精纺系统及半精纺系统等,并介绍了各生产工艺的流程、特点。针对纺制高支纱的需要,对各生产工艺路线作了改进。
关键词 羊绒 粗纺系统 精纺系统 精纺系统 改进
下载PDF
A Worsted Yarn Virtual Production System Based on BP Neural Network 被引量:2
4
作者 董奎勇 于伟东 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期34-37,共4页
Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results f... Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system. 展开更多
关键词 BP neural network yarn properties top qualities virtual production PREDICTION deduction.
下载PDF
Computer Assisted Designing System for Hands and Formability of Worsted Fabrics
5
作者 王府梅 徐广标 林洪芹 《Journal of Donghua University(English Edition)》 EI CAS 2004年第3期139-142,共4页
Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Ka... Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Kawabata’s hand and silhouette evaluation methods, a software system was established. Then the mechanical properties, hand and silhouette of a fabric can be predicted quickly and accurately in terms of fiber configurations, yarn and fabric structures. The predictive result if unsatisfied can be revised by the function of “Help for designing modification”. 展开更多
关键词 predictive system mechanical properties FORMABILITY HAND performances design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部