期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合精英初始化和K近邻的蛇优化算法
1
作者 王丽娟 刘姝含 +1 位作者 王剑 田亚旗 《计算机应用研究》 CSCD 北大核心 2024年第9期2712-2721,共10页
蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors ... 蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors improved snake optimizer,EKISO)。首先,为了提高初始种群质量,在种群初始化阶段提出精英初始化的方法,根据种群精英个体产生优质初始种群个体;其次,通过振荡因子优化螺旋觅食策略扩大全局勘探阶段的搜索范围、提高算法的局部逃逸能力;最后,在局部开发阶段提出K近邻思想的位置更新方法,增强种群个体之间的信息交互能力,从而加快收敛速度、提高收敛精度。利用14个经典测试函数和4个CEC2017测试函数将该方法与其他7种优化算法进行对比,证明EKISO收敛速度更快、精度更高且不易陷入局部最优。为了进一步验证EKISO的实用性与可行性,将EKISO应用于压力容器设计问题中,通过实验对比分析可知,EKISO在处理实际优化问题上具有一定的优越性。 展开更多
关键词 蛇优化算法 精英初始化 K近邻 振荡因子 工程优化
下载PDF
求解PFSP的集成多策略教学优化算法
2
作者 亓祥波 马志强 王宏伟 《组合机床与自动化加工技术》 北大核心 2023年第12期34-39,共6页
在标准教学优化算法的基础上,提出一种集成多策略教学优化算法(IMTLBO)用于求解置换流水车间调度问题(PFSP)。为了生成具有一定质量和多样性的精英种群,初始种群的20%使用NEHLJP1算法生成,其余个体使用反向学习法产生;此外,教学阶段采... 在标准教学优化算法的基础上,提出一种集成多策略教学优化算法(IMTLBO)用于求解置换流水车间调度问题(PFSP)。为了生成具有一定质量和多样性的精英种群,初始种群的20%使用NEHLJP1算法生成,其余个体使用反向学习法产生;此外,教学阶段采用基于惯性权重的分组教学、正弦TF策略和变邻域搜索,学习阶段采用双学习策略;最后,通过双局部搜索来提高算法精度。为检验其有效性,在三类基准实例上进行实验,结果表明了IMTLBO相比其它算法具有显著的寻优能力。除此之外,针对汽车连杆部件制造的大规模生产问题进行求解,大幅缩短了完工时间,进一步表明了IMTLBO求解PFSP的有效性。 展开更多
关键词 置换流水车间调度 教学优化算法 精英初始化 双局部搜索 基准实例
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部