利用神经网络(NN)的自学习能力以及模糊逻辑的动态性和及时性等特点,将模糊逻辑和 NN 有机地结合起来,构造出了五层模糊神经网络(FNN),并用训练 NN 的相应学习算法-BP 算法来训练网络。本文将 FNN 用于网络自相似业务预测研究中,并与单...利用神经网络(NN)的自学习能力以及模糊逻辑的动态性和及时性等特点,将模糊逻辑和 NN 有机地结合起来,构造出了五层模糊神经网络(FNN),并用训练 NN 的相应学习算法-BP 算法来训练网络。本文将 FNN 用于网络自相似业务预测研究中,并与单纯的 NN 算法相比较。仿真结果表明,FNN 能很好地预测复杂网络业务,与传统的 NN 算法相比,不仅收敛速度快,且得到更好的预测效果。本文为复杂网络业务流量预测研究提供了一种有效途径。展开更多
文摘利用神经网络(NN)的自学习能力以及模糊逻辑的动态性和及时性等特点,将模糊逻辑和 NN 有机地结合起来,构造出了五层模糊神经网络(FNN),并用训练 NN 的相应学习算法-BP 算法来训练网络。本文将 FNN 用于网络自相似业务预测研究中,并与单纯的 NN 算法相比较。仿真结果表明,FNN 能很好地预测复杂网络业务,与传统的 NN 算法相比,不仅收敛速度快,且得到更好的预测效果。本文为复杂网络业务流量预测研究提供了一种有效途径。