The novel covalently modified glassy carbon electrode with poly(xylitol) was prepared using an electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA) and hypoxanthine(HX). Th...The novel covalently modified glassy carbon electrode with poly(xylitol) was prepared using an electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA) and hypoxanthine(HX). This new electrode presents an excellent electrocatalytic activity towards the oxidation of UA, XA and HX by cyclic voltammetry(CV) method. The oxidation peaks of the three compounds were well defined and had enhanced the peak currents. The separation potentials of the oxidation peak potentials for UA-XA and XA-HX were 380 and 370 mV in CV, respectively. Using differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 5-55, 1.3-75.3 and 4-59 μmol/L were obtained for HX, XA and UA, respectively. The lowest detection limits(S/N=3) were 4.5, 0.75 and 3.75 μmol/L for HX, XA and UA, respectively. The practical application of the modified electrode was demonstrated by the determination of UA, XA, HX in human urine samples.展开更多
The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier tran...The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier transform infrared(FTIR), high resolution transmission electron microscopy(HR-TEM) and ^(13)C NMR. Since the fluorescence of the carbon dots was efficiently quenched by folic acid, the carbon dots were employed as selective fluorescence probes for detecting folic acid, depending on the formation of hydrogen bond among the functional group of folic acid(–OH, –COOH and –NH_2) and –OH and –COOH of the carbon dots. Moreover, the decrease of fluorescence intensity was capable of detecting folic acid in a linear range of 6×10^(-5)–8×10^(-8) mol/L with a detection limit of 1.2×10^(-9)mol/L at a signal-to-noise ratio of 3, suggesting a promising assay for folic acid. Significantly, the practicability of this fluorescence probe to assay folic acid in human urine samples was further evaluated.展开更多
基金Project(201215135) supported by the Natural Science Foundation of Jilin Province,China
文摘The novel covalently modified glassy carbon electrode with poly(xylitol) was prepared using an electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA) and hypoxanthine(HX). This new electrode presents an excellent electrocatalytic activity towards the oxidation of UA, XA and HX by cyclic voltammetry(CV) method. The oxidation peaks of the three compounds were well defined and had enhanced the peak currents. The separation potentials of the oxidation peak potentials for UA-XA and XA-HX were 380 and 370 mV in CV, respectively. Using differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 5-55, 1.3-75.3 and 4-59 μmol/L were obtained for HX, XA and UA, respectively. The lowest detection limits(S/N=3) were 4.5, 0.75 and 3.75 μmol/L for HX, XA and UA, respectively. The practical application of the modified electrode was demonstrated by the determination of UA, XA, HX in human urine samples.
基金supported by the Science Foundation of Southwest University (SWU114053)the Natural Science Foundation Project of CQ CSTC (cstc2013jcyj A10117)+1 种基金the Fundamental Research Funds for the Central Universities (XDJK2015A005, XDJK2016D033)the Innovative Research Project for Postgraduate Students of Chongqing (CYS14049)
文摘The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier transform infrared(FTIR), high resolution transmission electron microscopy(HR-TEM) and ^(13)C NMR. Since the fluorescence of the carbon dots was efficiently quenched by folic acid, the carbon dots were employed as selective fluorescence probes for detecting folic acid, depending on the formation of hydrogen bond among the functional group of folic acid(–OH, –COOH and –NH_2) and –OH and –COOH of the carbon dots. Moreover, the decrease of fluorescence intensity was capable of detecting folic acid in a linear range of 6×10^(-5)–8×10^(-8) mol/L with a detection limit of 1.2×10^(-9)mol/L at a signal-to-noise ratio of 3, suggesting a promising assay for folic acid. Significantly, the practicability of this fluorescence probe to assay folic acid in human urine samples was further evaluated.