[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control g...[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control group, groups treated with Botrytis cinerea, with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea, in order to study on effects of chitosan and organosilicon on antioxidant enzyme activities of tomato. [Result] Antioxidant enzyme activities of tomato seedlings were improved in groups with chitosan, organosilicon, and Botrytis cinerea and with chitosan and Botrytis cinerea compared with the group treated with Botrytis cinerea. On the 6th d, activities of PAL, SOD, POD, PPO and CAT in groups with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea increased by 27.36%, 52.07%, 43.55%, 82.02% and 71.82%, and 18.91%, 30.22%, 57.14%, 38.09% and 53.64%, respectively. [Conclusion] Antioxidant enzyme activities of tomato seedlings could be improved by chitosan and organosilicon.展开更多
Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the superna...Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the supernatant of the cell culture media was measured with Griess method, expressions of Inos protein and Mrna in vitro cultured endothelial cell line ECV304 were detected with immunofluorescence analysis and reverse transcriptase-PCR respectively. Immunokinase assay was employed to measure P38mapk activity. Results: Compared with the basal level of Inos expression and NO production, the NO level and the expressions of Inos Mrna and protein in the cells were increased after LPS stimulation. P38mapk activity in ECV304 cells exhibited a marked increase at 15 min after LPS stimulation, lasting for about 45 min before gradually decline. The Inos protein and Mrna expressions induced by LPS stimulation was significantly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. Conclusion: p38 MAPK plays an important role in iNOS expression and NO production in ECV304 cells, and the inhibition of the signal transduction pathway can be effective to reduce the production of iNOS and other cytokines, and therefore constitutes a useful strategy for treating septic shock or inflammation.展开更多
Aerobic glycolysis,also known as the Warburg effect,is a hallmark of cancer and essential for metabolism in malignancies,but its regulation and modulation in cancer cells remain poorly understood.Here,using large-scal...Aerobic glycolysis,also known as the Warburg effect,is a hallmark of cancer and essential for metabolism in malignancies,but its regulation and modulation in cancer cells remain poorly understood.Here,using large-scale functional screening,we identified a tumor-associated and broadly expressed oncogenic long noncoding RNA LINC00973.Notably,knocking down LINC00973 significantly inhibits the proliferation of multiple types of cancer cells and reduces tumor growth in vivo.Mechanistically,LINC00973 directly binds to lactate dehydrogenase A(LDHA),an essential glycolytic enzyme,and enhances its enzymatic activity,thereby promoting glycolysis.Clinically,high expression of LINC00973 is significantly associated with poor prognosis in many types of human cancers.This work demonstrates that LINC00973 modulates cancer-specific regulation of the Warburg effect,and may represent a potential target for broad-acting anti-cancer therapies.展开更多
Organophosphorous pesticide(OP) contamination has serious adverse effects on human health and the environment. Due to the toxicity of OPs and the threat presented by their accidental or intentional release in populate...Organophosphorous pesticide(OP) contamination has serious adverse effects on human health and the environment. Due to the toxicity of OPs and the threat presented by their accidental or intentional release in populated areas, the determination and monitoring of these OPs in food products and environment is of great importance. OPs are present in very small quantities and therefore, methods for their detection need to be highly sensitive and selective. Here, we aimed to develop a simple and selective aptamer-based colorimetric assay for the detection of omethoate, which is one of the commonly used OPs. The principle of the assay is that single-stranded DNA(ss DNA)-wrapped gold nanoparticles(Au NPs) are resistant to salt-induced aggregation. By employing an "artificial antibody" organophosphorous pesticide-binding aptamer(OBA) as the recognition element, aptamer-wrapped Au NPs(Au-apta) show high selectivity towards omethoate, resulting in the disconnection of aptamers from Au NPs and the aggregation of Au NPs. As there is a significant color change from the interparticle plasmon coupling during the aggregation of Au NPs, the established assay showed good linearity between 0.1 and 10 μmol/L, with a low detection limit of 0.1 μmol/L. Other OPs such as profenofos, phorate, and isocarbophos would not interfere with the detection of omethoate despite having similar structures. Thus, the colorimetric method shows potential for use in the detection of omethoate in real soil samples.展开更多
文摘[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control group, groups treated with Botrytis cinerea, with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea, in order to study on effects of chitosan and organosilicon on antioxidant enzyme activities of tomato. [Result] Antioxidant enzyme activities of tomato seedlings were improved in groups with chitosan, organosilicon, and Botrytis cinerea and with chitosan and Botrytis cinerea compared with the group treated with Botrytis cinerea. On the 6th d, activities of PAL, SOD, POD, PPO and CAT in groups with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea increased by 27.36%, 52.07%, 43.55%, 82.02% and 71.82%, and 18.91%, 30.22%, 57.14%, 38.09% and 53.64%, respectively. [Conclusion] Antioxidant enzyme activities of tomato seedlings could be improved by chitosan and organosilicon.
基金State Key Development Program of Basic Research (No. G2000057004) Key Project of National Natural Science Foundation (No 39830400)+1 种基金 National Natural Science Foundation of China (No. 30070735) Key Project of Science and Technology of Guangdong Provin
文摘Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the supernatant of the cell culture media was measured with Griess method, expressions of Inos protein and Mrna in vitro cultured endothelial cell line ECV304 were detected with immunofluorescence analysis and reverse transcriptase-PCR respectively. Immunokinase assay was employed to measure P38mapk activity. Results: Compared with the basal level of Inos expression and NO production, the NO level and the expressions of Inos Mrna and protein in the cells were increased after LPS stimulation. P38mapk activity in ECV304 cells exhibited a marked increase at 15 min after LPS stimulation, lasting for about 45 min before gradually decline. The Inos protein and Mrna expressions induced by LPS stimulation was significantly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. Conclusion: p38 MAPK plays an important role in iNOS expression and NO production in ECV304 cells, and the inhibition of the signal transduction pathway can be effective to reduce the production of iNOS and other cytokines, and therefore constitutes a useful strategy for treating septic shock or inflammation.
基金This work was supported by the National Natural Science Foundation of China(31371314 and 81673460)Sichuan Youth Science and Technology Innovation Research Team of Experimental Formulology(2020JDTD0022).
文摘Aerobic glycolysis,also known as the Warburg effect,is a hallmark of cancer and essential for metabolism in malignancies,but its regulation and modulation in cancer cells remain poorly understood.Here,using large-scale functional screening,we identified a tumor-associated and broadly expressed oncogenic long noncoding RNA LINC00973.Notably,knocking down LINC00973 significantly inhibits the proliferation of multiple types of cancer cells and reduces tumor growth in vivo.Mechanistically,LINC00973 directly binds to lactate dehydrogenase A(LDHA),an essential glycolytic enzyme,and enhances its enzymatic activity,thereby promoting glycolysis.Clinically,high expression of LINC00973 is significantly associated with poor prognosis in many types of human cancers.This work demonstrates that LINC00973 modulates cancer-specific regulation of the Warburg effect,and may represent a potential target for broad-acting anti-cancer therapies.
基金supported by the National Natural Science Foundation of China(6137103921305067+5 种基金21105048)China Postdoctoral Science Foundation Funded Project(2012T50475)Science Foundation of Jiangsu Province(BK20130754)Ph D Fund of the Ministry of Education for Young Teachers(0133219120019)King Saud University(Distinguished Scientist Fellowship Program)Graduate Education Innovation Program of Nanjing University of Science and Technology and Chinese Academy of Sciences
文摘Organophosphorous pesticide(OP) contamination has serious adverse effects on human health and the environment. Due to the toxicity of OPs and the threat presented by their accidental or intentional release in populated areas, the determination and monitoring of these OPs in food products and environment is of great importance. OPs are present in very small quantities and therefore, methods for their detection need to be highly sensitive and selective. Here, we aimed to develop a simple and selective aptamer-based colorimetric assay for the detection of omethoate, which is one of the commonly used OPs. The principle of the assay is that single-stranded DNA(ss DNA)-wrapped gold nanoparticles(Au NPs) are resistant to salt-induced aggregation. By employing an "artificial antibody" organophosphorous pesticide-binding aptamer(OBA) as the recognition element, aptamer-wrapped Au NPs(Au-apta) show high selectivity towards omethoate, resulting in the disconnection of aptamers from Au NPs and the aggregation of Au NPs. As there is a significant color change from the interparticle plasmon coupling during the aggregation of Au NPs, the established assay showed good linearity between 0.1 and 10 μmol/L, with a low detection limit of 0.1 μmol/L. Other OPs such as profenofos, phorate, and isocarbophos would not interfere with the detection of omethoate despite having similar structures. Thus, the colorimetric method shows potential for use in the detection of omethoate in real soil samples.