This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At ...This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.展开更多
The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were inv...The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC flocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8 - 1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.展开更多
Oily wastewater generated by various industries creates a major ecological problem throughout the world. The tra- ditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote ...Oily wastewater generated by various industries creates a major ecological problem throughout the world. The tra- ditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of pe- troleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 ℃, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rham- nolipids) to 63%. At 25 ~C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20℃ significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater.展开更多
基金Supported by the National Natural Science Foundation of China (No.20122203).
文摘This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L^-1(Na^+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L^-1(Na^+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L^-1.h^-1, 28.04-28.97ml·g^-1, 7.52-7.83ml·g^-1.h^-1, respectively. The specific production yields of propionate, butyrate and valerate decreased with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g^-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.
文摘The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC flocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8 - 1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.
基金Project (No. 56310503014) supported by the Department of Education of Zhejiang Province, China
文摘Oily wastewater generated by various industries creates a major ecological problem throughout the world. The tra- ditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of pe- troleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 ℃, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rham- nolipids) to 63%. At 25 ~C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20℃ significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater.