期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
兔窝撒糠灰好处多
1
作者 吴献坤 《北方牧业》 2003年第19期19-19,共1页
由于糠灰能迅速地吸收尿液,降低兔窝内的湿度,控制病菌衍生、传播,同时,兔摄食适量的糠灰,既补充了钾、钙等矿物质,又可预防拉稀、下痢。操作方法:兔窝打扫干净后,将烧制好的糠灰撒在兔窝内,以1~1.5厘米厚为宜,糠灰湿透后。
关键词 兔窝 糖灰 操作方法 生长发育
下载PDF
Tomato Resistance to Botrytis cinerea Induced by Chitosan 被引量:8
2
作者 顾丽嫱 《Agricultural Science & Technology》 CAS 2011年第4期537-540,共4页
[Objective] The aim was to explore the effect of tomato's resistance to Botrytis cinerea induced by exogenous Chitosan.[Method] The leaf spraying method was used to determine the induced resistance effect of Chitosan... [Objective] The aim was to explore the effect of tomato's resistance to Botrytis cinerea induced by exogenous Chitosan.[Method] The leaf spraying method was used to determine the induced resistance effect of Chitosan to tomato B.cinerea and the chlorophyll content,soluble protein,soluble sugar,proline influence,the activities of peroxidase(POD),malondialdehyde(MDA)and the Proline content in leaves of tomato.[Result] The induced resistance of Chitosan reached 58.26% at 14th d after treatment;Compared with the B.cinerea stress group,the chlorophyll content in leaves of tomato seedlings of B.cinerea stress + Chitosan group had increased by 34.63%,while that of soluble protein content,soluble sugar content,Pro content and POD activity was 5.30%,10.83%,16.21% and 16.88%,respectively(except for the MDA content,which was decreased by 16.54%).[Conclusion] Exogenous Chitosan could improve photosynthetic efficiency and protect enzymes activity to improve the resistance of tomato seedlings to B.cinerea. 展开更多
关键词 CHITOSAN TOMATO Botrytis cinerea Induced resistance
下载PDF
Effects of Chitosan and Organosilicon on Antioxidant Enzyme Activity of Tomato Seedlings Diseased with Botrytis cinerea 被引量:3
3
作者 顾丽嫱 《Agricultural Science & Technology》 CAS 2012年第5期1011-1013,共3页
[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control g... [Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control group, groups treated with Botrytis cinerea, with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea, in order to study on effects of chitosan and organosilicon on antioxidant enzyme activities of tomato. [Result] Antioxidant enzyme activities of tomato seedlings were improved in groups with chitosan, organosilicon, and Botrytis cinerea and with chitosan and Botrytis cinerea compared with the group treated with Botrytis cinerea. On the 6th d, activities of PAL, SOD, POD, PPO and CAT in groups with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea increased by 27.36%, 52.07%, 43.55%, 82.02% and 71.82%, and 18.91%, 30.22%, 57.14%, 38.09% and 53.64%, respectively. [Conclusion] Antioxidant enzyme activities of tomato seedlings could be improved by chitosan and organosilicon. 展开更多
关键词 CHITOSAN ORGANOSILICON Botrytis cinerea Antioxidant enzyme
下载PDF
Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(VI)in water 被引量:13
4
作者 JIANG Chun-lu WANG Rui +2 位作者 CHEN Xing ZHENG Liu-gen CHENG Hua 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1652-1664,共13页
Chitosan-coated fly ash(CWF)was prepared by the acid leaching-coating method.Chitosan and fly ash were crosslinked in the solution of acetic acid and sulfuric acid.The microstructure of CWF was conducted by scanning e... Chitosan-coated fly ash(CWF)was prepared by the acid leaching-coating method.Chitosan and fly ash were crosslinked in the solution of acetic acid and sulfuric acid.The microstructure of CWF was conducted by scanning electron microscope(SEM)and X-ray diffraction(XRD).The removal of Cr(VI)from water by CWF was studied by adsorption experiments.The composite prepared by the experiment developed a pore structure and a crystal structure similar to SiO_(2) and chitosan chain-like coating was formed on the surface of fly ash.The new modified material has larger surface roughness,specific surface area and more adsorption channels.The Cr(VI)was enriched in modified materials by electrostatic adsorption between CrO_(4)^(2−)、CrO_(7)^(2−)and-NH_(3)^(+) group and surface acid functional groups.The movement of Cr(VI)in solution is a diffusion process from the main body of the liquid phase to the surface of the liquid film. 展开更多
关键词 CHITOSAN fly ash(CWF) CR(VI) ADSORPTION MODIFICATION
下载PDF
Dyeing and printing wastewater treatment using fly-ash coated with chitosan 被引量:6
5
作者 陈忻 孙恢礼 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第4期875-881,共7页
Printing and dyeing industry is a considerable source of environmental contamination. In this study treatment of printing and dyeing wastewater with a new type of sewage treatment agent, fly-ash coated with chitosan p... Printing and dyeing industry is a considerable source of environmental contamination. In this study treatment of printing and dyeing wastewater with a new type of sewage treatment agent, fly-ash coated with chitosan particles (FCCP), was examined. The effects ofpH, stirring time, sedimentation time and temperature on color, COD, turbidity and NH3-N removal were determined. The optimum dosage of FCCP and the influence of individual factors on removal efficiency were tested. The optimum parameters determined using the L16 (45) orthogonal experiment were as follows: FCCP (weight ratio of chitosan to fly-ash 1:6) dosage, 4 g.L^-1; temperature, 35℃; pH, 4. The stirring time and sedimentation time were 20 min and 5 h, respectively. Under these optimum conditions, the color, COD and NH3-N removal ratios were 97%, 80% and 75%, respectively. 展开更多
关键词 FCCP printing and dyeing wastewater TREATMENT color removal COD removal
下载PDF
Preparation and characterization of chitosan/nano-hydroxyapatite composite used as bone substitute materials 被引量:1
6
作者 张利 Li Yubao  Zhou Gang  Wu Lan  Mu Yuanhua  Yang Zheng 《High Technology Letters》 EI CAS 2007年第1期31-35,共5页
Chitosan/nano-hydroxyapatite composites with different weight ratios were prepared through a co-precipitation method using Ca(OH)2, H3PO4 and chitosan as starting materials. The properties of these composites were c... Chitosan/nano-hydroxyapatite composites with different weight ratios were prepared through a co-precipitation method using Ca(OH)2, H3PO4 and chitosan as starting materials. The properties of these composites were characterized by means of TEM, IR, XRD, TGA, burn-out tests and universal matertial testing machine. The results showed that the HA synthesized here was poorly crystalline carbonated nanometer crystals and dispersed uniformly in chitosan phase and there was no phase-separation between the two phases. The addition of n-HA resulted in a decrease of decomposing temperature of chitosan. Because of the interactions between chitosan and n-HA, the mechanical properties of these composites were improved, and the maximum value of the compressive strength was measured to be about 120MPa corresponding to the chitosan/n-HA composite with a weight ratio of 30/70. 展开更多
关键词 CHITOSAN NANO-HYDROXYAPATITE COMPOSITE CO-PRECIPITATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部