Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography sa...Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
The paper covers the electrical capacitance tomography(ECT) data analysis on shear zones formed during silo discharging process.This is due to the ECT aptitude for detection of slight changes of material concentration...The paper covers the electrical capacitance tomography(ECT) data analysis on shear zones formed during silo discharging process.This is due to the ECT aptitude for detection of slight changes of material concentration.On the basis of ECT visualisations,wall-adjacent shear zone profiles are analysed for different wall roughness parameters.The analysis on changes of material concentration,based on ECT images,enables the calculation for the characteristic parameters of shear zones-size and material concentration inside the shear zone in a dynamic process of silo discharging.In order to verify the methodology a series of experiments on gravitational flow of bulk solids under various conditions were conducted with different initial granular material packing densities and silo wall roughness.The investigation shows that the increase in container wall roughness is an effective method for reducing the dynamic effects during the material discharging,since these effects are resulted from the resonance between hopper construction and trembling material.Such effects will damage industrial equipment in practical applications and need further investigation.展开更多
Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),...Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the ″geometric″ roughness of random surface.This ″geometric″ roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between ″geometric″ roughness and integrated roughness (contain both ″geometric″ roughness and ″dielectric″ roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of ″dielectric″ roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the ″geometric″ roughness.展开更多
Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Th...Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Thus, objective of this research was to evaluate the technical and economic aspects of the two methods. Optimization was conducted with 20 experiments for input factors (moisture content) and output factors (head brown rice recovery, specific energy consumption). Besides, other factors were also monitored, such as the gap between the two disks, speed of disk and roll, and pressure of rubber roll on paddy. Test results showed that the maximum value of head brown rice (77.4%) and the minimum value of specific energy consumption (0.66 kWh/ton) corresponding to moisture content of paddy of 13.7% for stone disk dehusker. At similar moisture content (13.7%), head brown rice recovery and specific energy consumption were 77.2% and 1.04 kWh/ton for rubber roll dehusker, respectively. As the result, specific energy consumption of rubber roll dehusker was higher than that of stone disk dehusker, corresponding to the higher dehusking efficiency.展开更多
The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the...The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the mechanics of contact surfaces. Problems of mechanics of contact surfaces are related to accuracy of 3D surface roughness characteristic. One of the most important factors for 3D characteristics determination is the number of data points per x and y axes. With number of data points we understand its number in cut-off length. Number of data points have substantial influence on the accuracy of measurement results, measuring time and size of output data file (especially along the y-axis direction, where number of data points are number of parallel profiles). Number of data points must be optimal. Small number of data points lead to incorrect results and increase distribution amplitude, but too large number of data points do not enlarge range of fundamental information, but substantially increase measuring time. Therefore, we must find optimal number of data points per each surface processing method.展开更多
Roughening the surfaces of zirconium alloy tubes by glass-bead peening has been shown to increase the CHF (critical heat flux) in pool-boiling of water. The increase in CHF attributed to surface roughening effect ha...Roughening the surfaces of zirconium alloy tubes by glass-bead peening has been shown to increase the CHF (critical heat flux) in pool-boiling of water. The increase in CHF attributed to surface roughening effect has been measured in pool-boiling experiments using small-diameter zirconium alloy tubes that have been glass-peened with different bead sizes, intensity and coverage. The CHF was found to correlate with the fractal roughness measured on the metal surfaces. In this study, the nucleate pool-boiling characteristics of a large diameter Zircaloy-2 CANDU~ calandria tube (outer diameter -132 mm) with a glass-peened outside surface were tested in a pool of water near saturation. The primary objective was to measure the wall temperature and heat flux in order to develop a representative nucleate pool-boiling curve for large-diameter tubes with a glass-peened outside surface. By comparing the experimental results with models (e.g., Rohsenow correlation), a modified boiling correlation has been developed for a glass-peened surface of calandria tubes that includes a surface roughness parameter.展开更多
An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the ave...An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the average distance of puncture fibers in Z direction and Ply Stacking angle,and the constraint conditions are the density and diameter of carbon fibers and the density of carbon matrix.The results demonstrate that after optimization,the overall height of the ablative carbon/carbon surface is reduced by 56.5%,the standard deviation is reduced by 34.9% and the surface roughness is reduced by 12.6%,which suggests the remarkable improvement of ablative homogeneity.The present investigation can provide practical methodology for the optimum design of carbon/carbon ablative property and the development of new carbon/carbon composites.展开更多
Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shea...Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shearing, the surfaces of rock joints were measured by the Talysurf CLI 2000. By correlating the AE events with the shear stress-shear displacement curve, one can observe four periods of the whole course of shearing of rock joints. By the contrast of AE location and actual damage zone, it is elucidated that the AE event is related to the morphology of the joint. With the increase of shearing times, the shear behavior of rock joints gradually presents from the response of brittle behavior to that of ductile behavior. By combining the results of topography measurement, four morphological parameters of joint surface, S p(the maximum height of joint surface), N(number of islands), A(projection area) and V(volume of joint) were introduced, which decrease with shearing. Both the joint roughness coefficient(JRC) and joint matching coefficient(JMC) drop with shearing, and the shear strength of rock joints can be predicted by the JRC-JMC model. It establishes the relationship between micro-topography and macroscopic strength, which have the same change rule with shearing.展开更多
To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater ...To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater improvements in productivity, and increase the quality of the machined part. End milling is the most common metal removal operation encountered. It is widely used to mate with other part in die, aerospace, automotive, and machinery design as well as in manufacturing industries. Surface roughness is an important measure of the technological quality of a product and a factor that greatly influences manufacturing cost. The quality of the surface plays a very important role in the performance of milling as a good-quality milled surface significantly improves fatigue strength, corrosion resistance, or creep life. Consequently, the desired surface roughness value is usually specified for an individual part, and specific processes are selected in order to achieve the specified finish. Purpose of the study is to develop a technique to predict a surface roughness of the part to be machined according to technological parameters. Such technique could be achieved by making mathematical model of machining. In this study as machining process the milling process is chosen, especially for end milling operation. Additionally to the study, one of the key factors, which differ from similar studies, is that as surface parameters the 2D, 3D surface parameters are used. In this study, all the surface parameters are expressed as 2D, 3D parameters. The 2D, 3D surface parameters give more precise figure of the surface; therefore it is possible to evaluate the surface parameters more precisely according to technological parameters. The result of the study, mathematical model of end-milling is achieved and qualitative analysis is maintained. Achieved model could help technologists to understand more completely the process of forming surface roughness.展开更多
Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was propos...Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was proposed.The software ANSYS Maxwell was used to simulate the effect of different pole orientation arrangements on the magnetic field distribution.A comparison of polishing effect was made between elastic and inelastic magnetic pole carriers.The processing parameters of the elastic magnetic tool polishing for the blade root were optimized by orthogonal experiment(Taguchi)method.Results show that compared with the inelastic magnetic polishing tool,the elastic magnetic polishing tool with polyurethane as the pole carrier can effectively improve the surface quality of the polished workpiece.Under the optimal processing parameters(rotational speed=900 r/min,feeding rate=6 mm/min,machining gap=1.5 mm and abrasive size=10‒14μm),the original milling marks at the blade root are effectively removed and the average surface roughness Ra is dropped from 0.95μm to 0.12μm,which verifies the feasibility of the elastic magnetic polishing tool in the surface finishing of the titanium alloy blade root.展开更多
Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of mic...Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameteriza- tion scheme for numerical atmospheric models.展开更多
The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitiv...The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.展开更多
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金Supported by the Polish Ministry of Science and Higher Education in 2009-2012 as a research project (3687/B/T02/2009/37)
文摘The paper covers the electrical capacitance tomography(ECT) data analysis on shear zones formed during silo discharging process.This is due to the ECT aptitude for detection of slight changes of material concentration.On the basis of ECT visualisations,wall-adjacent shear zone profiles are analysed for different wall roughness parameters.The analysis on changes of material concentration,based on ECT images,enables the calculation for the characteristic parameters of shear zones-size and material concentration inside the shear zone in a dynamic process of silo discharging.In order to verify the methodology a series of experiments on gravitational flow of bulk solids under various conditions were conducted with different initial granular material packing densities and silo wall roughness.The investigation shows that the increase in container wall roughness is an effective method for reducing the dynamic effects during the material discharging,since these effects are resulted from the resonance between hopper construction and trembling material.Such effects will damage industrial equipment in practical applications and need further investigation.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)
文摘Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the ″geometric″ roughness of random surface.This ″geometric″ roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between ″geometric″ roughness and integrated roughness (contain both ″geometric″ roughness and ″dielectric″ roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of ″dielectric″ roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the ″geometric″ roughness.
文摘Application of improper methods on rice processing affects rice quality and head rice recovery. In Vietnam, paddy with different moisture contents (from 13% to 17%) is dehusked by both rubber roll and stone disk. Thus, objective of this research was to evaluate the technical and economic aspects of the two methods. Optimization was conducted with 20 experiments for input factors (moisture content) and output factors (head brown rice recovery, specific energy consumption). Besides, other factors were also monitored, such as the gap between the two disks, speed of disk and roll, and pressure of rubber roll on paddy. Test results showed that the maximum value of head brown rice (77.4%) and the minimum value of specific energy consumption (0.66 kWh/ton) corresponding to moisture content of paddy of 13.7% for stone disk dehusker. At similar moisture content (13.7%), head brown rice recovery and specific energy consumption were 77.2% and 1.04 kWh/ton for rubber roll dehusker, respectively. As the result, specific energy consumption of rubber roll dehusker was higher than that of stone disk dehusker, corresponding to the higher dehusking efficiency.
文摘The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the mechanics of contact surfaces. Problems of mechanics of contact surfaces are related to accuracy of 3D surface roughness characteristic. One of the most important factors for 3D characteristics determination is the number of data points per x and y axes. With number of data points we understand its number in cut-off length. Number of data points have substantial influence on the accuracy of measurement results, measuring time and size of output data file (especially along the y-axis direction, where number of data points are number of parallel profiles). Number of data points must be optimal. Small number of data points lead to incorrect results and increase distribution amplitude, but too large number of data points do not enlarge range of fundamental information, but substantially increase measuring time. Therefore, we must find optimal number of data points per each surface processing method.
文摘Roughening the surfaces of zirconium alloy tubes by glass-bead peening has been shown to increase the CHF (critical heat flux) in pool-boiling of water. The increase in CHF attributed to surface roughening effect has been measured in pool-boiling experiments using small-diameter zirconium alloy tubes that have been glass-peened with different bead sizes, intensity and coverage. The CHF was found to correlate with the fractal roughness measured on the metal surfaces. In this study, the nucleate pool-boiling characteristics of a large diameter Zircaloy-2 CANDU~ calandria tube (outer diameter -132 mm) with a glass-peened outside surface were tested in a pool of water near saturation. The primary objective was to measure the wall temperature and heat flux in order to develop a representative nucleate pool-boiling curve for large-diameter tubes with a glass-peened outside surface. By comparing the experimental results with models (e.g., Rohsenow correlation), a modified boiling correlation has been developed for a glass-peened surface of calandria tubes that includes a surface roughness parameter.
基金Sponsored by the National Natural Science Foundation of China(Grant No.1057244)
文摘An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the average distance of puncture fibers in Z direction and Ply Stacking angle,and the constraint conditions are the density and diameter of carbon fibers and the density of carbon matrix.The results demonstrate that after optimization,the overall height of the ablative carbon/carbon surface is reduced by 56.5%,the standard deviation is reduced by 34.9% and the surface roughness is reduced by 12.6%,which suggests the remarkable improvement of ablative homogeneity.The present investigation can provide practical methodology for the optimum design of carbon/carbon ablative property and the development of new carbon/carbon composites.
基金Projects(51274249,51174228)supported by the National Natural Science Foundation of China
文摘Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shearing, the surfaces of rock joints were measured by the Talysurf CLI 2000. By correlating the AE events with the shear stress-shear displacement curve, one can observe four periods of the whole course of shearing of rock joints. By the contrast of AE location and actual damage zone, it is elucidated that the AE event is related to the morphology of the joint. With the increase of shearing times, the shear behavior of rock joints gradually presents from the response of brittle behavior to that of ductile behavior. By combining the results of topography measurement, four morphological parameters of joint surface, S p(the maximum height of joint surface), N(number of islands), A(projection area) and V(volume of joint) were introduced, which decrease with shearing. Both the joint roughness coefficient(JRC) and joint matching coefficient(JMC) drop with shearing, and the shear strength of rock joints can be predicted by the JRC-JMC model. It establishes the relationship between micro-topography and macroscopic strength, which have the same change rule with shearing.
文摘To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater improvements in productivity, and increase the quality of the machined part. End milling is the most common metal removal operation encountered. It is widely used to mate with other part in die, aerospace, automotive, and machinery design as well as in manufacturing industries. Surface roughness is an important measure of the technological quality of a product and a factor that greatly influences manufacturing cost. The quality of the surface plays a very important role in the performance of milling as a good-quality milled surface significantly improves fatigue strength, corrosion resistance, or creep life. Consequently, the desired surface roughness value is usually specified for an individual part, and specific processes are selected in order to achieve the specified finish. Purpose of the study is to develop a technique to predict a surface roughness of the part to be machined according to technological parameters. Such technique could be achieved by making mathematical model of machining. In this study as machining process the milling process is chosen, especially for end milling operation. Additionally to the study, one of the key factors, which differ from similar studies, is that as surface parameters the 2D, 3D surface parameters are used. In this study, all the surface parameters are expressed as 2D, 3D parameters. The 2D, 3D surface parameters give more precise figure of the surface; therefore it is possible to evaluate the surface parameters more precisely according to technological parameters. The result of the study, mathematical model of end-milling is achieved and qualitative analysis is maintained. Achieved model could help technologists to understand more completely the process of forming surface roughness.
基金Joint Funds of the National Natural Science Foundation of China(U20A20293)。
文摘Removal of milling marks at the root fillet of titanium alloy blade is a tough work because of the interference between the polishing tool and the workpiece.A polishing method based on elastic magnetic tool was proposed.The software ANSYS Maxwell was used to simulate the effect of different pole orientation arrangements on the magnetic field distribution.A comparison of polishing effect was made between elastic and inelastic magnetic pole carriers.The processing parameters of the elastic magnetic tool polishing for the blade root were optimized by orthogonal experiment(Taguchi)method.Results show that compared with the inelastic magnetic polishing tool,the elastic magnetic polishing tool with polyurethane as the pole carrier can effectively improve the surface quality of the polished workpiece.Under the optimal processing parameters(rotational speed=900 r/min,feeding rate=6 mm/min,machining gap=1.5 mm and abrasive size=10‒14μm),the original milling marks at the blade root are effectively removed and the average surface roughness Ra is dropped from 0.95μm to 0.12μm,which verifies the feasibility of the elastic magnetic polishing tool in the surface finishing of the titanium alloy blade root.
基金supported by State Key Program of National Natural Science Foundation of China(Grant No.40830957)
文摘Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameteriza- tion scheme for numerical atmospheric models.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50976117 and 50836006)
文摘The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.