The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and free...The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.展开更多
文摘The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.