探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取...探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取工艺为:碱液浓度0.05 mol/L、温度45.68℃、水料比8、时间94.96 m in。在上述工艺条件下蛋白提取率为80.11%,蛋白纯度为77.53%(干基),淀粉提取率为89.61%,淀粉纯度为90.50%(干基)。展开更多
Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the qua...Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the quality of protein of waxy maize for human consumption. Double recessive waxy-QPM (wx-o2) genotypes had been generated from Southern Chinese material by haploid induction of crosses heterozygous for the two quality traits with an absolutely conserved waxy type and an improved amino acid profile. The vitreous kernel trait (due to the additional modifier genes present in QPM) was lost in the wx-o2 plant material; this may be due to the waxy mutation, this is anyhow desirable for acceptance as waxy maize is preferred due to its soft grains. The content of the quality limiting amino acid lysine was greatly increased in double recessive wx-o2 genotypes compared to standard waxy maize, but still with a high variation among genotypes for future improvement. Conclusively, it was indeed possible to combine two grain quality mutations successfully within one genotype and prototypes of double quality wx-o2 are available now to contribute to meet human requirements in essential amino acids and thus reduce malnutrition in various regions of Asia.展开更多
文摘探讨了稀碱法分离工艺对糯米中蛋白质提取率的影响,以得到纯度较高的糯米蛋白和糯米淀粉。研究碱液浓度、温度、水料比和时间对提取率的影响,采用响应面法对工艺参数进行优化,通过软件对提取率的二次多项数学模型解逆矩阵分析,最佳提取工艺为:碱液浓度0.05 mol/L、温度45.68℃、水料比8、时间94.96 m in。在上述工艺条件下蛋白提取率为80.11%,蛋白纯度为77.53%(干基),淀粉提取率为89.61%,淀粉纯度为90.50%(干基)。
文摘Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the quality of protein of waxy maize for human consumption. Double recessive waxy-QPM (wx-o2) genotypes had been generated from Southern Chinese material by haploid induction of crosses heterozygous for the two quality traits with an absolutely conserved waxy type and an improved amino acid profile. The vitreous kernel trait (due to the additional modifier genes present in QPM) was lost in the wx-o2 plant material; this may be due to the waxy mutation, this is anyhow desirable for acceptance as waxy maize is preferred due to its soft grains. The content of the quality limiting amino acid lysine was greatly increased in double recessive wx-o2 genotypes compared to standard waxy maize, but still with a high variation among genotypes for future improvement. Conclusively, it was indeed possible to combine two grain quality mutations successfully within one genotype and prototypes of double quality wx-o2 are available now to contribute to meet human requirements in essential amino acids and thus reduce malnutrition in various regions of Asia.