Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure,...Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.展开更多
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
文摘Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.