This work is to observe the performance of PC based robot manipulator under general purpose (Windows), Soft (Linux) and Hard (RT Linux) Real Time Operating Systems (OS). The same open loop control system is ob...This work is to observe the performance of PC based robot manipulator under general purpose (Windows), Soft (Linux) and Hard (RT Linux) Real Time Operating Systems (OS). The same open loop control system is observed in different operating systems with and without multitasking environment. The Data Acquisition (DAQ, PLC-812PG) card is used as a hardware interface. From the experiment, it could be seen that in the non real time operating system (Windows), the delay of the control system is larger than the Soft Real Time OS (Linux). Further, the authors observed the same control system under Hard Real Time OS (RT-Linux). At this point, the experiment showed that the real time error (jitter) is minimum in RT-Linux OS than the both of the previous OS. It is because the RT-Linux OS kernel can set the priority level and the control system was given the highest priority. The same experiment was observed under multitasking environment and the comparison of delay was similar to the preceding evaluation.展开更多
Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicabilit...Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.展开更多
文摘This work is to observe the performance of PC based robot manipulator under general purpose (Windows), Soft (Linux) and Hard (RT Linux) Real Time Operating Systems (OS). The same open loop control system is observed in different operating systems with and without multitasking environment. The Data Acquisition (DAQ, PLC-812PG) card is used as a hardware interface. From the experiment, it could be seen that in the non real time operating system (Windows), the delay of the control system is larger than the Soft Real Time OS (Linux). Further, the authors observed the same control system under Hard Real Time OS (RT-Linux). At this point, the experiment showed that the real time error (jitter) is minimum in RT-Linux OS than the both of the previous OS. It is because the RT-Linux OS kernel can set the priority level and the control system was given the highest priority. The same experiment was observed under multitasking environment and the comparison of delay was similar to the preceding evaluation.
文摘Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.