Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this...Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.展开更多
The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applie...The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .展开更多
基金Project (No.033113111) supported by Tianjin Science Association Key Project,China
文摘Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.
基金Acknowledgments This work was supported by the National Nat- ural Science Foundation of China (41172147), the Anhui Province Science and Technology Research Plan (12010402110), and the Shanxi Province One Hundred Distinguished Professor Plan project.
文摘The techniques of stress relief mining in low-permeability coal seams and pillarless gob side retained roadway entry using Y-type ventilation and gas drainage systems were developed to control gas outbursts and applied successfully. However, as the mining depth increasing, parts of the gas drainage system are not suitable for mines with high gas emissions. Because larger mining depths cause higher ground stresses, it becomes extremely difficult to maintain long gob side roadways. The greater deformation suffered by the roadway is not favorable lor borehole drilling for continuous gas drainage. To solve these problems, Y-type ventilation and gas drainage systems installed from a roof roadway were designed for drainage optimization. This system was designed based on a gas-enrichment zone analysis developed from mining the 11-2 coal seam in the Zhuji Mine at Huainan, Anhui Province, China. The method of Y-type gas extraction from different mine areas was applied to the panel 1112(1) in the Zhuji Mine. The absolute gas emission rate was up to 116.3 m^3/min with an average flow of 69.1 m^3/min at an average drainage concentration of nearly 85 %. After the Y-type method was adopted, the concentration of gas in the return air was 0.15 %-0.64 %, averaging 0.39 % with a ventilation rate of 2100-2750 m^3/min. The gas management system proved to be efficient, and the effective gas control allowed safe production to continue .