An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.