In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characterist...In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characteristic is discovered first up to now.On the basis of the survey_line systematic error model,the formulae of the rank_defect adjustment model are deduced according to modern adjustment theory.An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi_systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.展开更多
The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind...The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind the flow disturbing element(hydraulic elbow), an ultrasonic flowmeter with applied head set in accordance with the Z-type system was used. For comparative purposes, a flow simulation for 3 different turbulence models(k-epsilon, SST and SSG) was performed. It was found that with a proper ultrasonic flowmeter heads configurations, it is possible to measure the flow rate disturbed by the hydraulic elbow at any distance from the source of the disturbance. It has to use appropriate correction factor that can be determined by knowing the flow velocity profile equation. Based on comparison of CFD simulation results with experimental data, the accuracy/purposefulness of using individual turbulence models in the case of discussed hydraulic installation was evaluated.展开更多
The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tro...The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accuracy of the derived ZTD using the SHAO-C model can be improved by 60.5% averagely compared with the EGNOS model. The overall bias and rms are 2.0 and 4.5 cm, respectively, which should be sufficient to satisfy the requirements of most GNSS navigation or positioning applications in terms of the tropospheric delay correction.展开更多
文摘In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank_defect characteristic is discovered first up to now.On the basis of the survey_line systematic error model,the formulae of the rank_defect adjustment model are deduced according to modern adjustment theory.An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi_systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.
文摘The article is an attempt to compile the results of CFD liquid flow simulation through pipeline section containing hydraulic elbow with the results of ultrasonic flow measurements. To carry out the measurements behind the flow disturbing element(hydraulic elbow), an ultrasonic flowmeter with applied head set in accordance with the Z-type system was used. For comparative purposes, a flow simulation for 3 different turbulence models(k-epsilon, SST and SSG) was performed. It was found that with a proper ultrasonic flowmeter heads configurations, it is possible to measure the flow rate disturbed by the hydraulic elbow at any distance from the source of the disturbance. It has to use appropriate correction factor that can be determined by knowing the flow velocity profile equation. Based on comparison of CFD simulation results with experimental data, the accuracy/purposefulness of using individual turbulence models in the case of discussed hydraulic installation was evaluated.
基金supported by the National Natural Science Foundation of China (Grant No.10603011 and 41174023)the National High Technology Research and Development Program of China (Grant No.2009AA12Z307)+2 种基金Science and Technology Commission of Shanghai Municipality (Grant Nos.05QMX1462 and 08ZR1422400)the Youth Foundation of Knowledge Innovation Project of the Chinese Academy of SciencesShanghai Astronomical Observatory (Grant No.5120090304)
文摘The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accuracy of the derived ZTD using the SHAO-C model can be improved by 60.5% averagely compared with the EGNOS model. The overall bias and rms are 2.0 and 4.5 cm, respectively, which should be sufficient to satisfy the requirements of most GNSS navigation or positioning applications in terms of the tropospheric delay correction.