In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relax...In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relaxation simultaneously is that the result is not satisfactory when the feasible region is apart from the desired working point or the optimization problem is infeasible. The mixed logic method is introduced to describe the priority of the constraints and objectives, thereby the soft constraints adjustment and objectives coordination are solved together in RTO. A case study on the Shell heavy oil fractionators benchmark problem illustrating the method is finally presented.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system...This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system’s internal and external constraints. Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60474051) the Key Technology and Development Program of Shanghai Science and Technology Department (No. 04DZ11008) partly by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20020248028).
文摘In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relaxation simultaneously is that the result is not satisfactory when the feasible region is apart from the desired working point or the optimization problem is infeasible. The mixed logic method is introduced to describe the priority of the constraints and objectives, thereby the soft constraints adjustment and objectives coordination are solved together in RTO. A case study on the Shell heavy oil fractionators benchmark problem illustrating the method is finally presented.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
基金the National Natural Science Foundation of China (No. 60675041)the Program for New Century Excellent Talents in University (No. NCET-06-0398)
文摘This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system’s internal and external constraints. Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.