Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysi...Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysis is exemplified by the paleoclimatic reconstruction for Carpathian and Altai Mountain ranges. For the "Skolevsky Beskidy" national park of Carpaty the paleoclimatic scenarios have been drown up aiming at the more precise definition of climatic conditions for the period of mass mountain slope terracing. The stability of terrace systems of various designs in the current climatic conditions has been assessed. It is shown that during periods of humid climate the terraces, whose designs have been focused on drainage, were built. In periods of dry and warm climate the terrace systems capable of accumulating water were built. Both these types of terrace systems are destroyed in nowadays. Only those terrace systems are stable which were adjusted by their builders to contrast variations of precipitation. For Western Altais the paleoclimatic scenario has been done to forecast the safety of the Bronze Age kurgans (burial earth mounds) with permafrost inside the construction. In the Altay region during the Holocene it has revealed two periods of sharp cooling, the peaks of which occurred in the intervals 4500- 4300 and 2500-2300 years pronounced climatic drying ago, and two periods of 4900-4700 and 130-70 years ago. Depletion of the algae composition in the layer corresponding to the last period of drying climate indicates a very sharp change in the parameters of moisture and turning the lake into a dry swamp. Periods of cold weather may have contributed to the formation of special ritual traditions of the Sakan tribes that require the frozen ground to bury the dead. The later climate fluctuations identified have not affected the safety of permafrost in burial mounds constructed in the V-III cc BC.展开更多
基金supported by the Russian Foundation for Basic Research (Grant No 08-05-92223)
文摘Methodological problems of climatic reconstruction for different periods of Holocene are discussed on the basis of a multiple group biological analysis on peat-sapropel sediments. The possibility of biological analysis is exemplified by the paleoclimatic reconstruction for Carpathian and Altai Mountain ranges. For the "Skolevsky Beskidy" national park of Carpaty the paleoclimatic scenarios have been drown up aiming at the more precise definition of climatic conditions for the period of mass mountain slope terracing. The stability of terrace systems of various designs in the current climatic conditions has been assessed. It is shown that during periods of humid climate the terraces, whose designs have been focused on drainage, were built. In periods of dry and warm climate the terrace systems capable of accumulating water were built. Both these types of terrace systems are destroyed in nowadays. Only those terrace systems are stable which were adjusted by their builders to contrast variations of precipitation. For Western Altais the paleoclimatic scenario has been done to forecast the safety of the Bronze Age kurgans (burial earth mounds) with permafrost inside the construction. In the Altay region during the Holocene it has revealed two periods of sharp cooling, the peaks of which occurred in the intervals 4500- 4300 and 2500-2300 years pronounced climatic drying ago, and two periods of 4900-4700 and 130-70 years ago. Depletion of the algae composition in the layer corresponding to the last period of drying climate indicates a very sharp change in the parameters of moisture and turning the lake into a dry swamp. Periods of cold weather may have contributed to the formation of special ritual traditions of the Sakan tribes that require the frozen ground to bury the dead. The later climate fluctuations identified have not affected the safety of permafrost in burial mounds constructed in the V-III cc BC.