Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by g...Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.展开更多
BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
文摘Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.