Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-deg...Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.展开更多
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival...The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
基金Funded by the National Science Foundation of China (No. 50075029).
文摘Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.
基金Project(51375226)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project(PAPD)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(2014)supported by the the Fundamental Research Funds for the Central Universities,China
文摘The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.