This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form....This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.展开更多
基金Project (No. 20040146) supported by Zhejiang Provincial Edu-cation Department Foundation, China
文摘This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.